全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Latitudinal Dependence of Cosmic Rays Modulation at 1 AU and Interplanetary Magnetic Field Polar Correction

DOI: 10.1155/2013/793072

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cosmic rays differential intensity inside the heliosphere, for energy below 30?GeV/nuc, depends on solar activity and interplanetary magnetic field polarity. This variation, termed solar modulation, is described using a 2D (radius and colatitude) Monte Carlo approach for solving the Parker transport equation that includes diffusion, convection, magnetic drift, and adiabatic energy loss. Since the whole transport is strongly related to the interplanetary magnetic field (IMF) structure, a better understanding of his description is needed in order to reproduce the cosmic rays intensity at the Earth, as well as outside the ecliptic plane. In this work an interplanetary magnetic field model including the standard description on ecliptic region and a polar correction is presented. This treatment of the IMF, implemented in the HelMod Monte Carlo code (version 2.0), was used to determine the effects on the differential intensity of Proton at 1 AU and allowed one to investigate how latitudinal gradients of proton intensities, observed in the inner heliosphere with the Ulysses spacecraft during 1995, can be affected by the modification of the IMF in the polar regions. 1. Introduction The Solar Modulation, due to the solar activity, affects the Local Interstellar Spectrum (LIS) of Galactic Cosmic Rays (GCR) typically at energies lower than 30?GeV/nucl. This process, described by means of the Parker equation (e.g., see [1, 2] and Chapter 4 of [3]), is originated from the interaction of GCRs with the interplanetary magnetic field (IMF) and its irregularities. The IMF is the magnetic field that is carried outwards during the solar wind expansion. The interplanetary conditions vary as a function of the solar cycle which approximately lasts eleven years. In a solar cycle, when the maximum activity occurs, the IMF reverse his polarity. Thus, similar solar polarity conditions are found almost every 22 years [4]. In the HelMod Monte Carlo code version 1.5 (e.g., see [2]), the “classical” description of IMF, as proposed by Parker [5], was implemented together with the polar corrections of the solar magnetic field suggested subsequently in [6, 7]. This IMF was used inside the HelMod [2] code to investigate the solar modulation observed at Earth and to partially account for GCR latitudinal gradients, that is, those observed with the Ulysses spacecraft [8, 9]. In order to fully account for both the latitudinal gradients and latitudinal position of the proton-intensity minimum observed during the Ulysses fast scan in 1995, the HelMod Code was updated to the version 2.0 to

References

[1]  E. N. Parker, “The passage of energetic charged particles through interplanetary space,” Planetary and Space Science, vol. 13, no. 1, pp. 9–49, 1965.
[2]  P. Bobik, G. Boella, M. J. Boschini et al., “Systematic investigation of solar modulation of galactic protons for solar cycle 23 using a monte carlo approach with particle drift effects and latitudinal dependencehe,” The Astrophysical Journal, vol. 745, p. 132, 2012.
[3]  C. Leroy and P. G. Rancoita, Principles of Radiation Interaction in Matter and Detection, World Scientific Publishing, River Edge, NJ, USA, 3rd edition, 2011.
[4]  R. D. Strauss, M. S. Potgieter, and S. E. S. Ferreira, “Modeling ground and space based cosmic ray observations,” Advances in Space Research, vol. 49, pp. 392–407, 2012.
[5]  E. N. Parker, “Dynamics of the interplanetary gas and magnetic fields,” The Astrophysical Journal, vol. 128, p. 664, 1958.
[6]  J. R. Jokipii and J. Kota, “The polar heliospheric magnetic field,” Geophysical Research Letters, vol. 16, pp. 1–4, 1989.
[7]  U. W. Langner, Effect of termination shock acceleraion on cosmic ray in the helisphere [Ph.D. thesis], Potchestroom University, Potchestroom, South Africa, 2004.
[8]  B. Heber, W. Dr?ge, P. Ferrando et al., “Spatial variation of >40?MeV/n nuclei fluxes observed during the Ulysses rapid latitude scan,” Astronomy and Astrophysics, vol. 316, no. 2, pp. 538–546, 1996.
[9]  J. A. Simpson, “Ulysses cosmic-ray investigations extending from the south to the north polar regions of the Sun and heliosphere,” Nuovo Cimento della Societa Italiana di Fisica C, vol. 19, no. 6, pp. 935–943, 1996.
[10]  R. D. Strauss, M. S. Potgieter, I. Büsching, and A. Kopp, “Modeling the modulation of galactic and jovian electrons by stochastic processes,” The Astrophysical Journal Letters, vol. 735, no. 2, article 83, 2011.
[11]  E. N. Parker, “Newtonian development of the dynamical properties of ionized gases of low density,” Physical Review, vol. 107, pp. 924–933, 1957.
[12]  E. N. Parker, “The hydrodynamic theory of solar corpuscular radiation and stellar winds,” The Astrophysical Journal, vol. 132, p. 821, 1960.
[13]  E. N. Parker, “Sudden expansion of the corona following a large solar flare and the attendant magnetic field and cosmic-ray effects,” The Astrophysical Journal, vol. 133, p. 1014, 1961.
[14]  E. N. Parker, Interplanetary Dynamical Processes, Wiley-Interscience, New York, NY, USA, 1963.
[15]  M. Hattingh and R. A. Burger, “A new simulated wavy neutral sheet drift model,” Advances in Space Research, vol. 16, no. 9, pp. 213–216, 1995.
[16]  J. H. King and N. E. Papitashvili, “Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data,” Journal of Geophysical Research A, vol. 110, no. 2, Article ID A02104, 2005.
[17]  NASA-OMNIweb, online database, 2012, http://omniweb.gsfc.nasa.gov/form/dx1.html.
[18]  J. R. Jokipii and B. Thomas, “Effects of drift on the transport of cosmic rays. IV—modulation by a wavy interplanetary current sheet,” The Astrophysical Journal, vol. 243, pp. 1115–1122, 1981.
[19]  J. R. Jokipii, E. H. Levy, and W. B. Hubbard, “Effect of particle drift on cosmic-ray transport. I. general properties, application to solar modulation,” The Astrophysical Journal Letters, vol. 213, pp. L85–L88, 1977.
[20]  E. Marsch, W. I. Axford, and J. F. McKenzie, “Solar wind,” in Dynamic Sun, B. N. Dwivedi, Ed., pp. 374–402, 2003.
[21]  J. R. Jokipii and E. H. Levy, “Effects of particle drifts on the solar modulation of galactic cosmic rays,” The Astrophysical Journal Letters, vol. 213, pp. L85–L88, 1977.
[22]  M. S. Potgieter and H. Moraal, “A drift model for the modulation of galactic cosmic rays,” The Astrophysical Journal, vol. 294, part 1, pp. 425–440, 1985.
[23]  R. A. Burger and M. Hattingh, “Steady-state drift-dominated modulation models for galactic cosmic rays,” Astrophysics and Space Science, vol. 230, no. 1-2, pp. 375–382, 1995.
[24]  J. R. Jokipii and E. N. Parker., “On the convection, diffusion, and adiabatic deceleration of cosmic rays in the solar wind,” The Astrophysical Journal, vol. 160, p. 735, 1970.
[25]  L. J. Gleeson and W. I. Axford, “Solar modulation of galactic cosmic rays,” The Astrophysical Journal, vol. 154, p. 1011, 1968.
[26]  Y. Yamada, S. Yanagita, and T. Yoshida, “A stochastic view of the solar modulation phenomena of cosmic rays,” Geophysical Research Letters, vol. 25, pp. 2353–2356, 1998.
[27]  M. Gervasi, P. G. Rancoita, I. G. Usoskin, and G. A. Kovaltsov, “Monte-Carlo approach to Galactic cosmic ray propagation in the heliosphere,” Nuclear Physics B, vol. 78, no. 1–3, pp. 26–31, 1999.
[28]  M. Zhang, “A Markov stochastic process theory of cosmic-ray modulation,” The Astrophysical Journal, vol. 513, pp. 409–420, 1999.
[29]  K. Alanko-Huotari, I. G. Usoskin, K. Mursula, and G. A. Kovaltsov, “Stochastic simulation of cosmic ray modulation including a wavy heliospheric current sheet,” Journal of Geophysical Research A, vol. 112, no. 8, Article ID A08101, 2007.
[30]  C. Pei, J. W. Bieber, R. A. Burger, and J. Clem, “A general time-dependent stochastic method for solving Parker's transport equation in spherical coordinates,” Journal of Geophysical Research A, vol. 115, no. 12, Article ID A12107, 2010.
[31]  C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry and Natural Sciences, Springer, New York, NY, USA, 1985.
[32]  J. R. Jokipii, “Propagation of cosmic rays in the solar wind,” Reviews of Geophysics and Space Physics, vol. 9, pp. 27–87, 1971.
[33]  I. D. Palmer, “Transport coefficients of low-energy cosmic rays in interplanetary,” Reviews of Geophysics and Space Physics, vol. 20, pp. 335–351, 1982.
[34]  M. S. Potgieter and S. E. S. Ferreira, “Effects of the solar wind termination shock on the modulation of Jovian and galactic electrons in the heliosphere,” Journal of Geophysical Research A, vol. 107, article 1089, 9 pages, 2002.
[35]  W. Dr?ge, “Probing heliospheric diffusion coefficients with solar energetic particles,” Advances in Space Research, vol. 35, no. 4, pp. 532–542, 2005.
[36]  F. B. McDonald, P. Ferrando, B. Heber et al., “A comparative study of cosmic ray radial and latitudinal gradients in the inner and outer heliosphere,” Journal of Geophysical Research A, vol. 102, no. 3, pp. 4643–4651, 1997.
[37]  SIDC-team, “The International Sunspot Number,” Monthly Report on the International Sunspot Number, online catalogue, 1964–2010.
[38]  I. G. Usoskin, G. A. Bazilevskaya, and G. A. Kovaltsov, “Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers,” Journal of Geophysical Research A, vol. 116, no. 2, Article ID A02104, 2011.
[39]  A. Balogh, E. J. Smith, B. T. Tsurutani, D. J. Southwood, R. J. Forsyth, and T. S. Horbury, “The heliospheric magnetic field over the south polar region of the sun,” Science, vol. 268, no. 5213, pp. 1007–1010, 1995.
[40]  H. Moraal, “Proton modulation near solar minimim periods in consecutive solar cycles,” in Proceedings of the International Cosmic Ray Conference, vol. 6, p. 140, 1990.
[41]  C. W. Smith and J. W. Bieber, “Solar cycle variation of the interplanetary magnetic field spiral,” The Astrophysical Journal Letters, vol. 370, no. 1, pp. 435–441, 1991.
[42]  L. A. Fisk, “Motion of the footpoints of heliospheric magnetic field lines at the sun: implications for recurrent energetic particle events at high heliographic latitudes,” Journal of Geophysical Research, vol. 101, pp. 15547–15554, 1996.
[43]  M. Hitge and R. A. Burger, “Cosmic ray modulation with a Fisk-type heliospheric magnetic field and a latitude-dependent solar wind speed,” Advances in Space Research, vol. 45, no. 1, pp. 18–27, 2010.
[44]  T. R. Sanderson, R. G. Marsden, K. P. Wenzel, A. Balogh, R. J. Forsyth, and B. E. Goldstein, “High-latitude observations of energetic ions during the first Ulysses polar pass,” Space Science Reviews, vol. 72, no. 1-2, pp. 291–296, 1995.
[45]  R. G. Marsden, “The 3-D heliosphere at solar maximum,” The Publications of the Astronomical Society of the Pacific, vol. 113, pp. 129–130, 2001.
[46]  A. Balogh, R. G. Marsden, and E. J. Smith, The Heliosphere Near Solar Minimum. The Ulysses Perspective, Springer, New York, NY, USA, 2001.
[47]  B. Heber, M. S. Potgieter, and P. Ferrando, “Solar modulation of galactic cosmic rays: the 3D heliosphere,” Advances in Space Research, vol. 19, no. 5, pp. 795–804, 1997.
[48]  M. S. Potgieter, “Heliospheric modulation of cosmic ray protons: role of enhanced perpendicular diffusion during periods of minimum solar modulation,” Journal of Geophysical Research A, vol. 105, no. 8, pp. 18295–18303, 2000.
[49]  J. T. Hoeksema, “The large-scale structure of the heliospheric current sheet during the Ulysses epoch,” Space Science Reviews, vol. 72, no. 1-2, pp. 137–148, 1995.
[50]  S. E. S. Ferreira and M. S. Potgieter, “Long-term cosmic-ray modulation in the heliosphere,” The Astrophysical Journal, vol. 603, pp. 744–752, 2004.
[51]  Y. Shikaze, S. Orito, S. Haino et al., “Measurements of 0.2–20?GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer,” Astroparticle Physics, vol. 28, no. 1, pp. 154–167, 2007.
[52]  M. Aguilar, J. Alcaraz, and J. Allaby, “The Alpha Magnetic Spectrometer (AMS) on the International Space Station: part I—results from the test flight on the space shuttle,” Physics Reports, vol. 366, pp. 331–405, 2002.
[53]  O. Adriani, G. C. Barbarino, G. A. Bazilevskaya et al., “PAMELA measurements of cosmic-ray proton and helium spectra,” Science, vol. 332, no. 6025, pp. 69–72, 2011.
[54]  D. C. Ndiitwani, S. E. S. Ferreira, M. S. Potgieter, and B. Heber, “Modelling cosmic ray intensities along the Ulysses trajectory,” Annales Geophysicae, vol. 23, no. 3, pp. 1061–1070, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413