全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Silico Docking of HNF-1a Receptor Ligands

DOI: 10.1155/2012/705435

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. HNF-1a is a transcription factor that regulates glucose metabolism by expression in various tissues. Aim. To dock potential ligands of HNF-1a using docking software in silico. Methods. We performed in silico studies using HNF-1a protein 2GYP·pdb and the following softwares: ISIS/Draw 2.5SP4, ARGUSLAB 4.0.1, and HEX5.1. Observations. The docking distances (in angstrom units: 1 angstrom unit (?)?=?0.1 nanometer or ?metres) with ligands in decreasing order are as follows: resveratrol (3.8??), aspirin (4.5??), stearic acid (4.9??), retinol (6.0??), nitrazepam (6.8??), ibuprofen (7.9??), azulfidine (9.0??), simvastatin (9.0??), elaidic acid (10.1??), and oleic acid (11.6??). Conclusion. HNF-1a domain interacted most closely with resveratrol and aspirin 1. Introduction Hepatic nuclear factor 1 alpha (HNF-1a) is a liver enriched transcription factor that was first discovered in studies aimed at identifying proteins that were responsible for tissue-specific regulation of gene expression in the human liver [1]. These transcription factors were also found in tissues other than liver, including pancreatic islets and kidneys, suggesting they could have a more widespread role in physiological processes [2]. Together, the HNF family is part of a network of transcription factors that together control gene expression during embryogenic development and during adulthood [1]. Genes regulated by HNF-1a also encode products involved in the synthesis of seroproteins, carbohydrates and in detoxification [2]. HNF encoding genes arose by duplication of an ancestral gene at the onset of vertebrate evolution, an evolutionary mechanism for the generation of novel functions [3]. Mutations of HNF transcription family are well known to cause the autosomal dominant maturity onset diabetes of young (MODY), a clinically heterogeneous form of early onset of diabetes resulting from a primary defect in pancreatic beta cell function [4]. Some consider diabetes to be “a disorder of abnormal transcription factors” [4]. However it is now established that MODY results from a dysfunction of transcription factors [5] that regulate beta cell function by controlling downstream targets [6]. Protein-ligand interactions are increasingly employed to derive three dimensional structures of protein complexes. Computational techniques have become important to understand the molecular mechanisms of biological systems, as well as in obtaining leads for therapeutic agent identification. Considering the wide ranging effects of transcription factors in beta cell physiology, and the diverse

References

[1]  S. S. Fajans, G. I. Bell, and K. S. Polonsky, “Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young,” The New England Journal of Medicine, vol. 345, no. 13, pp. 971–980, 2001.
[2]  S. Cereghini, “Liver-enriched transcription factors and hepatocyte differentiation,” The FASEB Journal, vol. 10, no. 2, pp. 267–282, 1996.
[3]  C. Haumaitre, M. Reber, and S. Cereghini, “Functions of HNF1 family members in differentiation of the visceral endoderm cell lineage,” Journal of Biological Chemistry, vol. 278, no. 42, pp. 40933–40942, 2003.
[4]  K. Yamagata, “Regulation of pancreatic β-cell function by the HNF transcription network: lessons from maturity-onset diabetes of the young (MODY),” Endocrine Journal, vol. 50, no. 5, pp. 491–499, 2003.
[5]  G. U. Ryffel, “Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences,” Journal of Molecular Endocrinology, vol. 27, no. 1, pp. 11–29, 2001.
[6]  S. A. Duncan, M. A. Navas, D. Dufort, J. Rossant, and M. Stoffel, “Regulation of a transcription factor network required for differentiation and metabolism,” Science, vol. 281, no. 5377, pp. 692–695, 1998.
[7]  Z. Li, H. Wan, Y. Shi, and P. Ouyang, “Personal experience with four kinds of chemical structure drawing software: review on chemdraw, chemwindow, ISIS/draw, and chemsketch,” Journal of Chemical Information and Computer Sciences, vol. 44, no. 5, pp. 1886–1890, 2004.
[8]  A. Chikhi and A. Bensegueni, “Docking efficiency comparison of Surflex, a commercial package and Arguslab, a licensable freeware,” Journal of Computer Science & Systems Biology, vol. 1, pp. 81–86, 2008.
[9]  M. Yu, J. Wang, W. Li et al., “Proteomic screen defines the hepatocyte nuclear factor 1α-binding partners and identifies HMGB1 as a new cofactor of HNF1α,” Nucleic Acids Research, vol. 36, no. 4, pp. 1209–1219, 2008.
[10]  S. Michan and D. Sinclair, “Sirtuins in mammals: insights into their biological function,” Biochemical Journal, vol. 404, no. 1, pp. 1–13, 2007.
[11]  J. G. Wood, B. Rogina, S. Lavu et al., “Sirtuin activators mimic caloric restriction and delay ageing in metazoans,” Nature, vol. 430, no. 7000, pp. 686–689, 2004.
[12]  H. Yamamoto, K. Schoonjans, and J. Auwerx, “Sirtuin functions in health and disease,” Molecular Endocrinology, vol. 21, no. 8, pp. 1745–1755, 2007.
[13]  M. Wei, P. Fabrizio, F. Madia et al., “Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension,” PLoS Genetics, vol. 5, no. 5, Article ID e1000467, 2009.
[14]  E. M. Dioum, R. Chen, M. S. Alexander et al., “Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1,” Science, vol. 324, no. 5932, pp. 1289–1293, 2009.
[15]  J. Luo, A. Y. Nikolaev, S. I. Imai et al., “Negative control of p53 by Sir2α promotes cell survival under stress,” Cell, vol. 107, no. 2, pp. 137–148, 2001.
[16]  A. Brunet, L. B. Sweeney, J. F. Sturgill et al., “Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase,” Science, vol. 303, no. 5666, pp. 2011–2015, 2004.
[17]  M. C. Motta, N. Divecha, M. Lemieux et al., “Mammalian SIRT1 represses forkhead transcription factors,” Cell, vol. 116, no. 4, pp. 551–563, 2004.
[18]  V. M. Nayagam, X. Wang, C. T. Yong et al., “SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents,” Journal of Biomolecular Screening, vol. 11, no. 8, pp. 959–967, 2006.
[19]  J. C. Milne, P. D. Lambert, S. Schenk et al., “Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes,” Nature, vol. 450, no. 7170, pp. 712–716, 2007.
[20]  M. Sengottuvelan, K. Deeptha, and N. Nalini, “Resveratrol ameliorates DNA damage, prooxidant and antioxidant imbalance in 1,2-dimethylhydrazine induced rat colon carcinogenesis,” Chemico-Biological Interactions, vol. 181, no. 2, pp. 193–201, 2009.
[21]  D. M. Erion, S. Yonemitsu, Y. Nie et al., “SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11288–11293, 2009.
[22]  R. M. Anderson, D. Shanmuganayagam, and R. Weindruch, “Caloric restriction and aging: studies in mice and monkeys,” Toxicologic Pathology, vol. 37, no. 1, pp. 47–51, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133