全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spectral Analysis on Time-Course Expression Data: Detecting Periodic Genes Using a Real-Valued Iterative Adaptive Approach

DOI: 10.1155/2013/171530

Full-Text   Cite this paper   Add to My Lib

Abstract:

Time-course expression profiles and methods for spectrum analysis have been applied for detecting transcriptional periodicities, which are valuable patterns to unravel genes associated with cell cycle and circadian rhythm regulation. However, most of the proposed methods suffer from restrictions and large false positives to a certain extent. Additionally, in some experiments, arbitrarily irregular sampling times as well as the presence of high noise and small sample sizes make accurate detection a challenging task. A novel scheme for detecting periodicities in time-course expression data is proposed, in which a real-valued iterative adaptive approach (RIAA), originally proposed for signal processing, is applied for periodogram estimation. The inferred spectrum is then analyzed using Fisher’s hypothesis test. With a proper -value threshold, periodic genes can be detected. A periodic signal, two nonperiodic signals, and four sampling strategies were considered in the simulations, including both bursts and drops. In addition, two yeast real datasets were applied for validation. The simulations and real data analysis reveal that RIAA can perform competitively with the existing algorithms. The advantage of RIAA is manifested when the expression data are highly irregularly sampled, and when the number of cycles covered by the sampling time points is very reduced. 1. Introduction Patterns of periodic gene expression have been found to be associated with essential biological processes such as cell cycle and circadian rhythm [1], and the detection of periodic genes is crucial to advance our understanding of gene function, disease pathways, and, ultimately, therapeutic solutions. Using high-throughput technologies such as microarrays, gene expression profiles at discrete time points can be derived and hundreds of cell cycle regulated genes have been reported in a variety of species. For example, Spellman et al. applied cell synchronization methods and conducted time-course gene expression experiments on Saccharomyces cerevisiae [2]. The authors identified 800 cell cycle regulated genes using DNA microarrays. Also, Rustici et al. and Menges et al. identified 407 and about 500 cell cycle regulated genes in Schizosaccharomyces pombe and Arabidopsis, respectively [3, 4]. Signal processing in the frequency domain simplifies the analysis and an emerging number of studies have demonstrated the power of spectrum analysis in the detection of periodic genes. Considering the common issues of missing values and noise in microarray experiments, Ahdesm?ki et al. proposed a

References

[1]  W. Zhao, K. Agyepong, E. Serpedin, and E. R. Dougherty, “Detecting periodic genes from irregularly sampled gene expressions: a comparison study,” EURASIP Journal on Bioinformatics and Systems Biology, vol. 2008, Article ID 769293, 2008.
[2]  P. T. Spellman, G. Sherlock, M. Q. Zhang et al., “Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization,” Molecular Biology of the Cell, vol. 9, no. 12, pp. 3273–3297, 1998.
[3]  G. Rustici, J. Mata, K. Kivinen et al., “Periodic gene expression program of the fission yeast cell cycle,” Nature Genetics, vol. 36, no. 8, pp. 809–817, 2004.
[4]  M. Menges, L. Hennig, W. Gruissem, and J. A. H. Murray, “Cell cycle-regulated gene expression in Arabidopsis,” Journal of Biological Chemistry, vol. 277, no. 44, pp. 41987–42002, 2002.
[5]  M. Ahdesm?ki, H. L?hdesm?ki, R. Pearson, H. Huttunen, and O. Yli-Harja, “Robust detection of periodic time series measured from biological systems,” BMC Bioinformatics, vol. 6, article 117, 2005.
[6]  M. Ahdesm?ki, H. L?hdesm?ki, A. Gracey, et al., “Robust regression for periodicity detection in non-uniformly sampled time-course gene expression data,” BMC Bioinformatics, vol. 8, article 233, 2007.
[7]  E. F. Glynn, J. Chen, and A. R. Mushegian, “Detecting periodic patterns in unevenly spaced gene expression time series using Lomb-Scargle periodograms,” Bioinformatics, vol. 22, no. 3, pp. 310–316, 2006.
[8]  R. Yang, C. Zhang, and Z. Su, “LSPR: an integrated periodicity detection algorithm for unevenly sampled temporal microarray data,” Bioinformatics, vol. 27, no. 7, pp. 1023–1025, 2011.
[9]  E. R. Dougherty, “Small sample issues for microarray-based classification,” Comparative and Functional Genomics, vol. 2, no. 1, pp. 28–34, 2001.
[10]  Y. Tu, G. Stolovitzky, and U. Klein, “Quantitative noise analysis for gene expression microarray experiments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14031–14036, 2002.
[11]  Z. Bar-Joseph, “Analyzing time series gene expression data,” Bioinformatics, vol. 20, no. 16, pp. 2493–2503, 2004.
[12]  P. Stoica, J. Li, and H. He, “Spectral analysis of nonuniformly sampled data: a new approach versus the periodogram,” IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 843–858, 2009.
[13]  J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and Parametric Methods, Springer, New York, NY, USA, 2003.
[14]  A. W. C. Liew, N. F. Law, X. Q. Cao, and H. Yan, “Statistical power of Fisher test for the detection of short periodic gene expression profiles,” Pattern Recognition, vol. 42, no. 4, pp. 549–556, 2009.
[15]  V. Berger, “Pros and cons of permutation tests in clinical trials,” Statistics in Medicine, vol. 19, no. 10, pp. 1319–1328, 2000.
[16]  A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.
[17]  J. R. Chubb, T. Trcek, S. M. Shenoy, and R. H. Singer, “Transcriptional pulsing of a developmental gene,” Current Biology, vol. 16, no. 10, pp. 1018–1025, 2006.
[18]  T. Pramila, W. Wu, W. Noble, and L. Breeden, “Periodic genes of the yeast Saccharomyces cerevisiae: a combined analysis of five cell cycle data sets,” 2007.
[19]  U. Lichtenberg, L. J. Jensen, A. Fausb?ll, T. S. Jensen, P. Bork, and S. Brunak, “Comparison of computational methods for the identification of cell cycle-regulated genes,” Bioinformatics, vol. 21, no. 7, pp. 1164–1171, 2005.
[20]  A. W. C. Liew, J. Xian, S. Wu, D. Smith, and H. Yan, “Spectral estimation in unevenly sampled space of periodically expressed microarray time series data,” BMC Bioinformatics, vol. 8, article 137, 2007.
[21]  D. Johansson, P. Lindgren, and A. Berglund, “A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription,” Bioinformatics, vol. 19, no. 4, pp. 467–473, 2003.
[22]  I. Simon, J. Barnett, N. Hannett et al., “Serial regulation of transcriptional regulators in the yeast cell cycle,” Cell, vol. 106, no. 6, pp. 697–708, 2001.
[23]  T. I. Lee, N. J. Rinaldi, F. Robert, et al., “Transcriptional regulatory networks in Saccharomyces cerevisiae,” Science, vol. 298, no. 5594, pp. 799–804, 2002.
[24]  H. W. Mewes, D. Frishman, U. Güldener, et al., “MIPS: a database for genomes and protein sequences,” Nucleic Acids Research, vol. 30, no. 1, pp. 31–34, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413