全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Overview of the Statistical Methods Used for Inferring Gene Regulatory Networks and Protein-Protein Interaction Networks

DOI: 10.1155/2013/953814

Full-Text   Cite this paper   Add to My Lib

Abstract:

The large influx of data from high-throughput genomic and proteomic technologies has encouraged the researchers to seek approaches for understanding the structure of gene regulatory networks and proteomic networks. This work reviews some of the most important statistical methods used for modeling of gene regulatory networks (GRNs) and protein-protein interaction (PPI) networks. The paper focuses on the recent advances in the statistical graphical modeling techniques, state-space representation models, and information theoretic methods that were proposed for inferring the topology of GRNs. It appears that the problem of inferring the structure of PPI networks is quite different from that of GRNs. Clustering and probabilistic graphical modeling techniques are of prime importance in the statistical inference of PPI networks, and some of the recent approaches using these techniques are also reviewed in this paper. Performance evaluation criteria for the approaches used for modeling GRNs and PPI networks are also discussed. 1. Introduction Postgenomic era is marked by the availability of a deluge of genomic data and has, thus, enabled the researchers to look towards new dimensions for understanding the complex biological processes governing the life of a living organism [1–5]. The various life sustaining functions are performed via a collaborative effort involving DNA, RNA, and proteins. Genes and proteins interact with themselves and each other and orchestrate the successful completion of a multitude of important tasks. Understanding how they work together to form a cellular network in a living organism is extremely important in the field of molecular biology. Two important problems in this considerably nascent field of computational biology are the inference of gene regulatory networks and the inference of protein-protein interaction networks. This paper first looks at how the genes and proteins interact with themselves and then discusses the inference of an integrative cellular network of genes and proteins combined. Gene regulation is one of the many fascinating processes taking place in a living organism whereby the expression and repression of genes are controlled in a systematic manner. With the help of the enzyme RNA polymerase, DNA transcribes into mRNA which may or may not translate into proteins. It is found that in certain special cases mRNA is reverse-transcribed to DNA. The processes of transcription and translation are schematically represented in Figure 1, where the interactions in black show the most general framework and the interactions

References

[1]  X. Zhou and S. T. C. Wong, Computational Systems Bioinformatics, World Scientific, 2008.
[2]  Y. Huang, I. M. Tienda-Luna, and Y. Wang, “Reverse engineering gene regulatory networks: a survey of statistical models,” IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 76–97, 2009.
[3]  X. Zhou, X. Wang, and E. R. Dougherty, Genomic Networks: Statistical Inference from Microarray Data, John Wiley & Sons, 2006.
[4]  H. Kitano, “Computational systems biology,” Nature, vol. 420, no. 6912, pp. 206–210, 2002.
[5]  B. Mallick, D. Gold, and V. Baladandayuthapani, Bayesian Analysis of Gene Expression Data, Wiley, 2009.
[6]  H. D. Jong, “Modeling and simulation of genetic regulatoy systems: a literature review,” Journal of Computational Biology, vol. 9, no. 1, pp. 67–103, 2002.
[7]  X. Cai and X. Wang, “Stochastic modeling and simulation of gene networks,” IEEE Signal Processing Magazine, vol. 24, no. 1, pp. 27–36, 2007.
[8]  H. Hache, H. Lehrach, and R. Herwig, “Reverse engineering of gene regulatory networks: a comparative study,” Eurasip Journal on Bioinformatics and Systems Biology, vol. 2009, Article ID 617281, 2009.
[9]  F. Markowetz and R. Spang, “Inferring cellular networks—a review,” BMC Bioinformatics, vol. 8, article S5, 2007.
[10]  C. A. Penfold and D. L. Wild, “How to infer gene networks from expression profiles, revisited,” Interface Focus, vol. 3, pp. 857–870, 2011.
[11]  J. Wang, M. Li, Y. Deng, and Y. Pan, “Recent advances in clustering methods for protein interaction networks,” BMC Genomics, vol. 11, no. supplement 3, article S10, 2010.
[12]  X. Li, M. Wu, C. K. Kwoh, and S. K. Ng, “Computational approaches for detecting protein complexes from protein interaction networks: a survey,” BMC Genomics, vol. 11, no. 1, article S3, 2010.
[13]  A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, “Mapping and quantifying mammalian transcriptomes by RNA-Seq,” Nature Methods, vol. 5, no. 7, pp. 621–628, 2008.
[14]  K. Y. Yip, R. P. Alexander, K. K. Yan, and M. Gerstein, “Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data,” PLoS ONE, vol. 5, no. 1, Article ID e8121, 2010.
[15]  D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.
[16]  K. Murphy and S. Mian, “Modeling gene expression data using dynamic Bayesian networks,” Tech. Rep., University of California, Berkeley, Calif, USA, 2001.
[17]  Y. Zhang, Z. Deng, H. Jiang, and P. Jia, “Inferring gene regulatory networks from multiple data sources via a dynamic Bayesian network with structural EM,” in DILS, S. C. Boulakia and V. Tannen, Eds., vol. 4544 of Lecture Notes in Computer Science, pp. 204–214, Springer, 2007.
[18]  Z. M. Ibrahim, A. Ngom, and A. Y. Tawfik, “Using qualitative probability in reverse-engineering gene regulatory networks,” IEEE Transactions on Computational Biology and Bioinformatics, vol. 8, no. 2, pp. 326–334, 2011.
[19]  N. Kramer, J. Schafer, and A. Boulesteix, “Regularized estimation of large-scale gene association networks using graphical gaussian models,” BMC Bioinformatics, vol. 10, no. 1, p. 384, 2009.
[20]  P. Menéndez, Y. A. I. Kourmpetis, C. J. F. ter Braak, and F. A. van Eeuwijk, “Gene regulatory networks from multifactorial perturbations using graphical lasso: application to the DREAM4 challenge,” PLoS ONE, vol. 5, no. 12, Article ID e14147, 2010.
[21]  F.-X. Wu, W.-J. Zhang, and A. J. Kusalik, “Modeling gene expression from microarray expression data with state-space equations,” in Pacific Symposium on Biocomputing, R. B. Altman, A. K. Dunker, L. Hunter, T. A. Jung, and T. E. Klein, Eds., pp. 581–592, World Scientific, 2004.
[22]  Z. Wang, F. Yang, D. W. C. Ho, S. Swift, A. Tucker, and X. Liu, “Stochastic dynamic modeling of short gene expression time-series data,” IEEE Transactions on Nanobioscience, vol. 7, no. 1, pp. 44–55, 2008.
[23]  M. Quach, N. Brunel, and F. D'alché-Buc, “Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference,” Bioinformatics, vol. 23, no. 23, pp. 3209–3216, 2007.
[24]  Z. Wang, X. Liu, Y. Liu, J. Liang, and V. Vinciotti, “An extended kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 6, no. 3, pp. 410–419, 2009.
[25]  A. Noor, E. Serpedin, M. N. Nounou, and H. N. Nounou, “Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. 4, pp. 1203–1211, 2012.
[26]  A. Noor, E. Serpedin, M. Nounou, and H. Nounou, “Inferring gene regulatory networks with nonlinear models via exploiting sparsity,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '12), pp. 725–728, March 2012.
[27]  R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society B, vol. 58, pp. 267–288, 1996.
[28]  C. Koh, F. X. Wu, G. Selvaraj, and A. J. Kusalik, “Using a state-space model and location analysis to infer time-delayed Regulatory Networks,” Eurasip Journal on Bioinformatics and Systems Biology, vol. 2009, Article ID 484601, 3 pages, 2009.
[29]  A. A. Margolin, I. Nemenman, K. Basso et al., “ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context,” BMC Bioinformatics, vol. 7, no. supplement 1, article S7, 2006.
[30]  W. Zhao, E. Serpedin, and E. R. Dougherty, “Inferring connectivity of genetic regulatory networks using information-theoretic criteria,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 5, no. 2, pp. 262–274, 2008.
[31]  A. Noor, E. Serpedin, M. N. Nounou, H. N. Nounou, N. Mohamed, and L. Chouchane, “Information theoretic methods for modeling of gene regulatory networks,” in IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB '12), pp. 418–423, 2012.
[32]  T. Cover and J. Thomas, Elements of Information Theory, Wiley Interscience, 2006.
[33]  W. Zhao, E. Serpedin, and E. R. Dougherty, “Inferring gene regulatory networks from time series data using the minimum description length principle,” Bioinformatics, vol. 22, no. 17, pp. 2129–2135, 2006.
[34]  M. Vidyasagar, “Probabilistic methods in cancer biology,” Childhood, vol. 20, pp. 82–89, 2011.
[35]  P. Zoppoli, S. Morganella, and M. Ceccarelli, “TimeDelay-ARACNE: reverse engineering of gene networks from time-course data by an information theoretic approach,” BMC Bioinformatics, vol. 11, no. 1, article 154, 2010.
[36]  J. Dougherty, I. Tabus, and J. Astola, “Inference of gene regulatory networks based on a universal minimum description length,” Eurasip Journal on Bioinformatics and Systems Biology, vol. 2008, Article ID 482090, 2008.
[37]  A. Jaimovich, G. Elidan, H. Margalit, and N. Friedman, “Towards an integrated protein-protein interaction network: a relational Markov network approach,” Journal of Computational Biology, vol. 13, no. 2, pp. 145–164, 2006.
[38]  Y. Qi, F. Balem, C. Faloutsos, J. Klein-Seetharaman, and Z. Bar-Joseph, “Protein complex identification by supervised graph local clustering,” Bioinformatics, vol. 24, no. 13, pp. i250–i268, 2008.
[39]  J. R. Bradford, C. J. Needham, A. J. Bulpitt, and D. R. Westhead, “Insights into protein-protein interfaces using a Bayesian network prediction method,” Journal of Molecular Biology, vol. 362, no. 2, pp. 365–386, 2006.
[40]  D. Greene, G. Cagney, N. Krogan, and P. Cunningham, “Ensemble non-negative matrix factorization methods for clustering protein-protein interactions,” Bioinformatics, vol. 24, no. 15, pp. 1722–1728, 2008.
[41]  N. Nariai, Y. Tamada, S. Imoto, and S. Miyano, “Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data,” Bioinformatics, vol. 21, no. supplement 2, pp. ii206–ii212, 2005.
[42]  C. W. Li and B. S. Chen, “Identifying functional mechanisms of gene and protein regulatory networks in response to a broader range of environmental stresses,” Comparative and Functional Genomics, vol. 2010, Article ID 408705, 2010.
[43]  Y. C. Wang and B. S. Chen, “Integrated cellular network of transcription regulations and protein-protein interactions,” BMC Systems Biology, vol. 4, no. 1, article 20, 2010.
[44]  http://wiki.c2b2.columbia.edu/dream.
[45]  I. Cantone, L. Marucci, F. Iorio et al., “A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches,” Cell, vol. 137, no. 1, pp. 172–181, 2009.
[46]  R. Schweiger, M. Linial, and N. Linial, “Generative probabilistic models for protein-protein interaction networks-the biclique perspective,” Bioinformatics, vol. 27, no. 13, pp. i142–i148, 2011.
[47]  X. Zhou, X. Wang, and E. R. Dougherty, “Construction of genomic networks using mutual-information clustering and reversible-jump Markov-chain-Monte-Carlo predictor design,” Signal Processing, vol. 83, no. 4, pp. 745–761, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413