全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Analytical Step-by-Step Procedure to Derive the Flexural Response of RC Sections in Compression

DOI: 10.1155/2013/275657

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes an analysis procedure able to determine the flexural response of rectangular symmetrically reinforced concrete sections subjected to axial load and uniaxial bending. With respect to the usual numerical approaches, based on the fibre decomposition method, this procedure is based on the use of analytical expressions of the contributions to the equilibrium given by the longitudinal reinforcement and the concrete region in compression, which depend on the neutral axis depth and the curvature at each analysis step. The formulation is developed in dimensionless terms, after a preliminary definition of the geometrical and mechanical parameters involved, so that the results are valid for classes of RC sections. The constitutive laws of the materials include confinement effect on the concrete and postyielding behaviour of the steel reinforcement, which can be assumed to be softening behaviour for buckled reinforcing bars. The strength and curvature domains at the first yielding of the reinforcement in tension and at the ultimate state are derived in the form of analytical curves depending on the compression level; therefore, the role of a single parameter on the shape of these curves can easily be deduced. The procedure is validated by comparing some results with those numerically obtained by other authors. 1. Introduction The performance of reinforced concrete frames under severe earthquakes largely depends on the ability of the beam and column sections to undergo large inelastic deformations. Especially, this ability plays a decisive role in existing buildings, the safety level of which can be estimated by employing nonlinear analysis tools (like pushover), needing a careful input in terms of strength domains and moment-curvature relationships of the critical sections. The evaluation of the moment-curvature response of critical sections of RC members is a complex issue mainly because of the interaction of various parameters: constitutive laws of materials in the elastic and plastic ranges, member geometry, buckling phenomena in reinforcing steel bars, and loading conditions. In order to include in a computer software the cross-section strength domain and moment-curvature relationships of reinforced concrete members, two different approaches are usually followed: the use of strength domains [1–3] and moment-curvature relationships of a usually bilinear or trilinear prefixed shape [4–6], in which a degrading stiffness model reproduces the effect of yielding and damage of materials; the layered section approach, based on the fibre

References

[1]  A. Fafitis, “Interaction surfaces of reinforced-concrete sections in biaxial bending,” Journal of Structural Engineering, vol. 127, no. 7, pp. 840–846, 2001.
[2]  J. L. Bonet, P. F. Miguel, M. A. Fernandez, and M. L. Romero, “Analytical approach to failure surfaces in reinforced concrete sections subjected to axial loads and biaxial bending,” Journal of Structural Engineering, vol. 130, no. 12, pp. 2006–2015, 2004.
[3]  G. Monti and S. Alessandri, “Assessment of rc columns under combined biaxial bending and axial load,” in Proceedings of the 2nd FIB Congress, Naples, Italy, 2006.
[4]  R. W. Clough and S. B. Johnston, “Effect of stiffness degradation on earthquake ductility requirements,” in Proceedings of 2nd Japan Earthquake Engineering Symposium, Tokyo, Japan, 1966.
[5]  T. Takeda, M. A. Sozen, and N. N. Nielsen, “Reinforced concrete response to simulated earthquake,” Journal of Structural Division, vol. 96, no. 12, pp. 2257–2273, 1970.
[6]  M. S. L. Roufaiel and C. Meyer, “Analytical modeling of hysteretic behavior of reinforced concrete frame,” Journal of Structural Engineering, vol. 113, no. 3, pp. 429–444, 1987.
[7]  A. R. Mari and A. C. Scordelis, “Nonlinear geometric, material and time dependent analysis of three dimensional reinforced and prestressed concrete frames,” USB/SESM Report 84/12, Department of Civil Engineering, University of California, Berkeley, Calif, USA, 1973.
[8]  T. Taucer, E. Spacone, and F. C. Filippou, “A fiber beam-column element for seismic response analysis of reinforced concrete structures,” Report EERC 91-17, Earthquake Engineering Research Center, Berkeley, Calif, USA, 1991.
[9]  Z. Zhu, I. Ahmad, and A. Mirmiran, “Fiber element modeling for seismic performance of bridge columns made of concrete-filled FRP tubes,” Engineering Structures, vol. 28, no. 14, pp. 2023–2035, 2006.
[10]  E. O. Pfrang, C. P. Siess, and M. A. Sozen, “Load-moment-curvature characteristics of RC cross-sections,” ACI Journal, vol. 61, no. 7, pp. 763–778, 1964.
[11]  D. J. Carreira and K.-H. Chu, “The moment-curvature relationship of RC members,” ACI Journal, vol. 83, no. 2, pp. 191–198, 1986.
[12]  R. H. Wood, “Some controversial and curious developments in plastic theory of structures,” in Engineering Plasticity, J. Heyman and F. A. Leckie, Eds., pp. 665–691, Cambridge University Press, Cambridge, UK, 1968.
[13]  Y. L. Mo, “Investigation of reinforced concrete frame behaviour: theory and tests,” Magazine of Concrete Research, vol. 44, no. 160, pp. 163–173, 1992.
[14]  M. Jirasek and Z. P. Bazant, Inelastic Analysis of Structures, Jon Wiley & Sons, London, UK, 2002.
[15]  S. Chandrasekaran, L. Nunziante, G. Serino, and F. Carannante, “Curvature ductility of RC sections based on Eurocode: analytical procedure,” KSCE Journal of Civil Engineering, vol. 15, no. 1, pp. 131–144, 2011.
[16]  M. Fossetti and M. Papia, “Dimensionless analysis of RC rectangular sections under axial load and biaxial bending,” Engineering Structures, vol. 44, pp. 34–45, 2012.
[17]  P. Colajanni, M. Fossetti, and M. Papia, “Analytical prediction of ultimate moment and curvature of RC rectangular sections in compression,” Bulletin of Earthquake Engineering, 2013.
[18]  M. Saatcioglu and S. R. Razvi, “Strength and ductility of confined concrete,” Journal of Structural Engineering, vol. 118, no. 6, pp. 1590–1607, 1992.
[19]  M. Saatcioglu, A. H. Salamat, and S. R. Razvi, “Confined columns under eccentric loading,” Journal of Structural Engineering, vol. 121, no. 11, pp. 1547–1556, 1995.
[20]  G. Campione, M. Fossetti, and M. Papia, “Simplified analytical model for compressed high-strength columns confined by transverse steel and longitudinal bars,” in Proceedings of the 2nd FIB Congress, Naples, Italy, 2006.
[21]  G. Campione, M. Fossetti, and M. Papia, “Behavior of fiber-reinforced concrete columns under axially and eccentrically compressive loads,” ACI Structural Journal, vol. 107, no. 3, pp. 272–281, 2010.
[22]  G. Campione, M. Fossetti, G. Minafò, and M. Papia, “Influence of steel reinforcements on the behavior of compressed high strength R.C. circular columns,” Engineering Structures, vol. 34, pp. 371–382, 2012.
[23]  E. Hognestad, A Study of Combined Bending and Axial Load in Reinforced Concrete Members, Bulletin Series No. 399, Engineering Experiment Station, University of Illinois, Urbana, Ill, USA, 1951.
[24]  B. D. Scott, R. Park, and M. J. N. Priestley, “Stress-strain behaviour of concrete confined by overlapping hoops at low and high strain rate,” ACI Journal, vol. 79, no. 2, pp. 13–27, 1982.
[25]  J. B. Mander, M. J. N. Priestley, and R. Park, “Theoretical Stress-strain model for confined concrete,” Journal of Structural Engineering, vol. 114, no. 8, pp. 1804–1826, 1988.
[26]  R. P. Dhakal and K. Maekawa, “Modeling for postyield buckling of reinforcement,” Journal of Structural Engineering, vol. 128, no. 9, pp. 1139–1147, 2002.
[27]  F. A. Zahn, R. Park, and M. J. N. Priestley, “Strength and ductility of square reinforced concrete column sections subjected to biaxial bending,” ACI Structural Journal, vol. 86, no. 2, pp. 123–131, 1989.
[28]  Building Code Requirements for Structural Concrete and Commentary, ACI 318, American Concrete Institute (ACI), 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133