全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mechanical Properties of Lightweight Concrete Partition with a Core of Textile Waste

DOI: 10.1155/2013/482310

Full-Text   Cite this paper   Add to My Lib

Abstract:

This investigation is focused on bending experiment of some prismatic perlite lightweight concrete. In these samples, textile waste fibers are confined with textile mesh glass fiber and embedded in the central part of cubic lightweight concrete specimens. Bending experiments revealed that lightweight concrete panels with a core of textile waste fiber have less density than water and high energy absorption and ductility. Furthermore, these composite panels by having appropriate thermal insulation characteristics could be used for partitioning in the buildings. 1. Introduction In advanced industrialized countries, the utilization of fibers in concrete began in the early 1960s [1]. The type and form of fibers and also the construction of fiber-reinforced concrete (FRC) have improved significantly during the past five decades, and their employment have been on the rise [2, 3]. Improving the mechanical properties of concrete using the random distribution of fibers in it has been the topic of interest of numerous research studies [3–7]. Between 1994 and 2011, Wang et al. carried out several research efforts on adding carpet waste fibers to concrete and soil. In this research, the old carpets were transformed into fibers. These fibers were not necessarily of the same size and were actually used in many different shapes and sizes in concrete and soil. After compressive and bending experiments, the results showed that the usage of waste fibers had significant effects on the resistance of failure, stiffness, and ductility of concrete. The usage of this cheap waste in concrete has also increased the durability of concrete [8–10]. In recent years, dos Reis et al. examined the mechanical properties of FRC with textile waste fibers. In this research, the textile wastes of Nova Friburgo industry, located in Rio de Janeiro in Brazil, were used. The general purposes of this research were exploring the mechanical properties of reinforced polymer concrete and best use of textile waste fibers considering increased production of this kind of waste in Brazil. On an overall result, it was stated that the cutting waste textile fibers mixed with polymer concrete produce a unique composite material which had lower flexural and compressive characteristics as compared to unreinforced polymer concrete. Using these textile wastes in concrete lead to a smoother failure, unlike brittleness failure behavior of unreinforced polymer concrete. Furthermore, the usage of textile waste may solve the problems like environmental pollution and provision of an alternative material for the

References

[1]  K. Aghaee, Experimental study of using textile Industry waste fibers in the production of lightweight concrete applicable in building industry [M.S. thesis], Dept. of Civil Engineering, Islamic Azad University, Yazd, Iran, 2011.
[2]  J. M. L. Reis, “Mechanical characterization of fiber reinforced Polymer Concrete,” Materials Research, vol. 8, no. 3, pp. 357–360, 2005.
[3]  M. S. Meddah and M. Bencheikh, “Properties of concrete reinforced with different kinds of industrial waste fibre materials,” Construction and Building Materials, vol. 23, no. 10, pp. 3196–3205, 2009.
[4]  A. Sivakumar, “Influence of hybrid fibers on the post crack performance of high strength concrete,” Journal of Civil Engineering and Construction Technology, vol. 2, no. 7, pp. 147–159, 2011.
[5]  M. A. S. Mohamed, E. Ghorbel, and G. Wardeh, “Valorization of micro-cellulose fibers in self-compacting concrete,” Construction and Building Materials, vol. 24, no. 12, pp. 2473–2480, 2010.
[6]  L. Ferrara, Y.-D. Park, and S. P. Shah, “A method for mix-design of fiber-reinforced self-compacting concrete,” Cement and Concrete Research, vol. 37, no. 6, pp. 957–971, 2007.
[7]  A. Kriker, G. Debicki, A. Bali, M. M. Khenfer, and M. Chabannet, “Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate,” Cement and Concrete Composites, vol. 27, no. 5, pp. 554–564, 2005.
[8]  Y. Wang, A.-H. Zureick, B.-S. Cho, and D. E. Scott, “Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste,” Journal of Materials Science, vol. 29, no. 16, pp. 4191–4199, 1994.
[9]  Y. Wang, Utilization of Recycled Carpet Waste Fibers For reinForcement of Concrete and Soil, Woodhead publishing, 2006.
[10]  M. Ucar and Y. Wang, “Utilization of recycled post consumer carpet waste fibers as reinforcement in lightweight cementitious composites,” International Journal of Clothing Science and Technology, vol. 23, no. 4, pp. 242–248, 2011.
[11]  J. M. L. dos Reis, “Effect of textile waste on the mechanical properties of polymer concrete,” Materials Research, vol. 12, no. 1, pp. 63–67, 2009.
[12]  M. A. G. Jurumenha and J. M. L. dos Reis, “Fracture mechanics of polymer mortar made with recycled raw materials,” Materials Research, vol. 13, no. 4, pp. 475–478, 2010.
[13]  A. M. Neville and J. J. Brooks, Concrete Technology, 1987.
[14]  S. W. Mumenya, R. B. Tait, and M. G. Alexander, “Mechanical behaviour of Textile concrete under accelerated ageing conditions,” Cement and Concrete Composites, vol. 32, no. 8, pp. 580–588, 2010.
[15]  F. D. A. Silva, M. Butler, V. Mechtcherine, D. Zhu, and B. Mobasher, “Strain rate effect on the tensile behaviour of textile-reinforced concrete under static and dynamic loading,” Materials Science and Engineering A, vol. 528, no. 3, pp. 1727–1734, 2011.
[16]  R. Rolfes, M. Vogler, S. Czichon, and G. Ernst, “Exploiting the structural reserve of textile composite structures by progressive failure analysis using a new orthotropic failure criterion,” Computers and Structures, vol. 89, no. 11-12, pp. 1214–1223, 2011.
[17]  G. Ernst, M. Vogler, C. Hühne, and R. Rolfes, “Multiscale progressive failure analysis of textile composites,” Composites Science and Technology, vol. 70, no. 1, pp. 61–72, 2010.
[18]  J. Hausding, T. Engler, G. Franzke, U. K?ckritz, and C. Cherif, “Plain stitch-bonded multi-plies for textile reinforced concrete,” Autex Research Journal, vol. 6, no. 2, pp. 81–90, 2006.
[19]  V. Eckers, S. Janetzko, and T. Gries, “Drape study on textiles for concrete applications,” AUTEX Research Journal, vol. 12, no. 2, pp. 50–54, 2012.
[20]  Y. Wang, “Fiber and textile waste Utilization,” Waste and Biomass Valorization, vol. 1, no. 1, pp. 135–143, 2010.
[21]  D. Saravanan, “UV protection textile materials,” Autex Research Journal, vol. 7, no. 1, pp. 53–62, 2007.
[22]  E. M. Kalliala and P. Nousiainen, “Environmental profile of cotton and polyester-cotton fabrics,” Autex Research Journal, vol. 1, no. 1, pp. 8–20, 1999.
[23]  K. Aghaee and M. Foroughi, “Construction of lightweight concrete partitions using textile waste.,” in Proceedings of the 2nd International Conference for Sustainable Design, Engineering and Construction, pp. 793–800, American Society of Civil Engineering, 2012.
[24]  M. Foroughi and K. Aghaee, “Lightweight partitions using textile waste fibers,” in Proceedings of The 9th International Congress on Civil Engineering, p. 169, Isfahan university of technology, 2012.
[25]  American Society for Testing and Materials, ASTM C39, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
[26]  American Society for Testing and Materials (ASTM C1018-97), Standard test method for flexural toughness and first-crack strength of fiber-reinforced concrete (Using beam with third-point loading), Withdrawn 2006.
[27]  American Society for Testing and Materials (ASTM C331), Standard Specification for Lightweight Aggregates for Concrete Masonry Units.
[28]  H. Tanyildizi, “Statistical analysis for mechanical properties of polypropylene fiber reinforced lightweight concrete containing silica fume exposed to high temperature,” Materials and Design, vol. 30, no. 8, pp. 3252–3258, 2009.
[29]  American Society for Testing and Materials, ASTM C138, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, 2001.
[30]  O. Kayali, M. N. Haque, and B. Zhu, “Some characteristics of high strength fiber reinforced lightweight aggregate concrete,” Cement and Concrete Composites, vol. 25, no. 2, pp. 207–213, 2003.
[31]  B. A. Frankl, G. W. Lucier, T. K. Hassan, and S. H. Rizkalla, “Behavior of precast, prestressed concrete sandwich wall panels reinforced with CFRP shear grid,” PCI Journal, vol. 56, no. 2, pp. 42–54, 2011.
[32]  D. C. Salmon, A. Einea, M. K. Tadros, and T. D. Culp, “Full scale testing of precast concrete sandwich panels,” ACI Structural Journal, vol. 94, no. 4, pp. 354–362, 1997.
[33]  D. C. Salmon and A. Einea, “Partially composite sandwich panel deflections,” Journal of Structural Engineering, vol. 121, no. 4, pp. 778–783, 1995.
[34]  J. R. Mackechnie and T. Saevarsdottir, “New insulating precast concrete panels,” in Proceedings of the New Zealand Sustainable Building Conference, 2010.
[35]  F. Laurin and A. J. Vizzini, “Energy absorption of sandwich panels with composite-reinforced foam core,” Journal of Sandwich Structures and Materials, vol. 7, no. 2, pp. 113–132, 2005.
[36]  C. Druma, M. K. Alam, and A. M. Druma, “Finite element model of thermal transport in carbon foams,” Journal of Sandwich Structures and Materials, vol. 6, no. 6, pp. 527–540, 2004.
[37]  M. Foroughi and K. Aghaee, “Saving energy by using lightweight precast walls with a middle core of textile wastes,” in Proceedings of the 1st International Conference on New Approaches to Energy Storage, 2011.
[38]  The 19th part of Iranian national building regulations, Saving Energy, Second edition, 2001.
[39]  Thermal Conductivity of some common Materials and Gases, http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413