全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamical Properties of Scaled Atomic Wehrl Entropy of Multiphoton JCM in the Presence of Atomic Damping

DOI: 10.1155/2013/879058

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the dynamics of the atomic inversion, scaled atomic Wehrl entropy, and marginal atomic Q-function for a single two-level atom interacting with a one-mode cavity field taking in the presence of atomic damping. We obtain the exact solution of the master equation in the interaction picture using specific initial conditions. We examine the effects of atomic damping parameter and number of multiphoton transition on the scaled atomic Wehrl entropy, atomic Q-function, and their marginal distribution. We observe an interesting monotonic relation between the different physical quantities in the case of different values of the number of photon transition during the time evolution. 1. Introduction Entanglement is a property of correlations between two or more quantum systems [1]. These correlations defy classical description and are associated with intrinsically quantum phenomena. This nonlocal nature of entanglement has also been identified as an essential resource for many novel tasks such as quantum computation, quantum teleportation [2], superdense coding [3], quantum cryptography [4, 5], and more recently, one-way quantum computation [6], and quantum metrology [7]. These quantum information tasks cannot be carried out by classical resources and they rely on entangled states. This recognition led to an intensive search for mathematical tools that would enable a proper quantification of this resource [8]. In particular, it is of primary importance to test whether a given quantum state is separable or entangled. It is well known that the Jaynes-Cummings model (JCM) becomes more a realistic and experimental model under the effect of damping [9]. Besides the experimental drive, also there exists a theoretical motivation to include relevant damping mechanism to the JC model because its dynamics becomes more interesting. In this regard, many authors have treated the JCM with dissipation by the use of analytic approximations [10, 11] and numerical calculations [12–14]. The solution in the presence of dissipation is not only of theoretical interest but also important from a practical point of view since dissipation would be always present in any experimental realization of the model. However, the dissipation treated in the above studies is modeled by coupling to an external reservoir including energy dissipation. As is well known, in a dissipative quantum system, the system loses energy by creating a bath quantum. Over the last two decades, much attention has been focused on information entropies as a measure of the entanglement in quantum information [1]. In

References

[1]  M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000.
[2]  C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Physical Review Letters, vol. 70, no. 13, pp. 1895–1899, 1993.
[3]  P. Agrawal and A. Pati, “Perfect teleportation and superdense coding with W states,” Physical Review A, vol. 74, no. 6, Article ID 062320, 5 pages, 2006.
[4]  Z.-Q. Yin, H.-W. Li, W. Chen, Z.-F. Han, and G.-C. Guo, “Security of counterfactual quantum cryptography,” Physical Review A, vol. 82, no. 4, Article ID 042335, 6 pages, 2010.
[5]  Z.-R. Lin, G.-P. Guo, T. Tu, F.-Y. Zhu, and G.-C. Guo, “Counterfactual quantum cryptography,” Physical Review Letters, vol. 103, no. 23, Article ID 230501, 4 pages, 2009.
[6]  T. Morimae, “Strong entanglement causes low gate fidelity in inaccurate one-way quantum computation,” Physical Review A, vol. 81, no. 6, Article ID 060307, 4 pages, 2010.
[7]  K. Berrada, S. Abdel-Khalek, and C. H. Raymond Ooi, “Quantum metrology with entangled spin-coherent states of two modes,” Physical Review A, vol. 86, no. 3, Article ID 033823, 5 pages, 2012.
[8]  H. M. Wisemann and G. J. Milburn, Quantum Measurement and Control, Cambridge University Press, Cambridge, UK, 2010.
[9]  E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proceedings of the IEEE, vol. 51, no. 1, pp. 89–109, 1963.
[10]  S. M. Barnett and P. L. Knight, “Dissipation in a fundamental model of quantum optical resonance,” Physical Review A, vol. 33, no. 4, pp. 2444–2448, 1986.
[11]  R. R. Puri and G. S. Agarwal, “Finite-Q cavity electrodynamics: dynamical and statistical aspects,” Physical Review A, vol. 35, no. 8, pp. 3433–3449, 1987.
[12]  T. Quang, P. L. Knight, and V. Buzek, “Quantum collapses and revivals in an optical cavity,” Physical Review A, vol. 44, no. 9, pp. 6092–6096, 1991.
[13]  J. Eiselt and H. Risken, “Quasiprobability distributions for the Jaynes-Cummings model with cavity damping,” Physical Review A, vol. 43, no. 1, pp. 346–360, 1991.
[14]  B.-G. Englert, M. Naraschewski, and A. Schenzle, “Quantum-optical master equations: an interaction picture,” Physical Review A, vol. 50, no. 3, pp. 2667–2679, 1994.
[15]  J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, NJ, USA, 1955.
[16]  C. E. Shannon and W. Weaver, Mathematical Theory of Communication, Urbana University Press, Chicago, Ill, USA, 1949.
[17]  A.-S. Obada and S. Abdel-Khalek, “New features of the atomic Wehrl entropy and its density in multi-quanta two-level system,” Journal of Physics A, vol. 37, no. 25, article 6573, 2004.
[18]  S. Abdel-Khalek, “Atomic wehrl entropy in a two-level atom interacting with a cavity field,” Applied Mathematics and Information Sciences, vol. 1, no. 1, pp. 53–64, 2007.
[19]  R. Dermez and S. Abdel-Khalek, “Atomic Wehrl entropy and negativity as entanglement measures for qudit pure states in a trapped ion,” Journal of Russian Laser Research, vol. 32, no. 3, pp. 287–297, 2011.
[20]  S. Abdel-Khalek, E. M. Khalil, and S. I. Ali, “Entanglement of a two-level atom papered in a finite trio-coherent state,” Laser Physics, vol. 18, no. 2, pp. 135–143, 2008.
[21]  S. Abdel-Khalek, H. F. Abdel-Hameed, and M. Abdel-Aty, “Atomic wehrl entropy of a single qubit system,” International Journal of Quantum Information, vol. 9, no. 3, pp. 967–979, 2011.
[22]  S. Abdel-Khalek, “Dynamics of fisher information in kerr medium,” International Journal of Quantum Information, vol. 7, no. 8, pp. 1541–1548, 2009.
[23]  A.-S. F. Obada, S. Abdel-Khalek, and A. Plastino, “Information quantifiers' description of weak field vs. strong field dynamics for a trapped ion in a laser field,” Physica A, vol. 390, no. 3, pp. 525–533, 2011.
[24]  A.-S. F. Obada and S. Abdel-Khalek, “Entanglement evaluation with atomic Fisher information,” Physica A, vol. 389, no. 4, pp. 891–898, 2010.
[25]  P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Physical Review Letters, vol. 50, no. 24, pp. 1903–1906, 1983.
[26]  D. Meschede, H. Walther, and G. Müller, “One-atom maser,” Physical Review Letters, vol. 54, no. 6, pp. 551–554, 1985.
[27]  B. W. Shore and P. L. Knight, “The Jaynes-Cummings model,” Journal of Modern Optics, vol. 40, no. 7, pp. 1195–1238, 1993.
[28]  I. Marzoli, J. I. Cirac, R. Blatt, and P. Zoller, “Laser cooling of trapped three-level ions: designing two-level systems for sideband cooling,” Physical Review A, vol. 49, no. 4, pp. 2771–2779, 1994.
[29]  H. A. Hessian and A.-B. A. Mohamed, “Entanglement and its dynamics with atomic spontaneous decay,” Chinese Physics Letters, vol. 25, no. 7, article 2492, 2008.
[30]  S. Abdel-Khalek and A.-S. F. Obada, “The atomic Wehrl entropy of a V-type three-level atom interacting with two-mode squeezed vacuum state,” Journal of Russian Laser Research, vol. 30, no. 2, pp. 146–156, 2009.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133