The electronic structure and electron momentum density distribution in BaO and BaS are presented using Compton spectroscopy. The first-ever Compton profile measurements on polycrystalline BaO and BaS were performed using 59.54?keV gamma-rays. To interpret the experimental data, we have computed the theoretical Compton profiles of BaO and BaS using the linear combination of atomic orbitals method. In the present computation, the correlation scheme proposed by Perdew-Burke-Ernzerhof and the exchange scheme of Becke were considered. The hybrid B3PW and Hartree-Fock based profiles were also computed for both compounds. The ionic configurations are performed to estimate the charge transfer on compound formation, and the present study suggests charge transfer from Ba to O and S atoms. On the basis of equal-valence-electron-density profiles, it is found that BaO is more ionic as compared to BaS. 1. Introduction The II–VI alkaline earth compounds have interesting bond characteristics and simple crystal structures. BaO and BaS have potential applications in light-emitting diodes (LEDs), laser diodes (LDs), and magnetooptical devices [1–4]. BaO is an indirect bandgap, whereas BaS is a direct bandgap material. At normal conditions, BaO and BaS crystallize in NaCl (B1) structure, but under pressure, they show structural phase transition from B1 to B2 structure [5, 6]. Using the full-potential linearized augmented plane wave (FP-LAPW) method, Drablia et al. [7] reported the electronic and optical properties of BaO and BaS in cubic phase at normal and under hydrostatic pressure. Lin et al. [8] observed that the electronic structure of these compounds containing oxygen atoms always obeys a different relationship from the compounds not containing oxygen atoms using density functional theory (DFT). Most of the earlier studies, both experimental and theoretical, involve the electronic, optical, and structural properties of BaO and BaS [5–15]. To the best of our knowledge, no one attempted the electronic structure and momentum density of BaO and BaS using Compton spectroscopy. It is well established that Compton spectroscopy provides a useful test to examine the bonding in solids [16, 17]. Thus, we found it worth to study the electronic structure in BaO and BaS using Compton profile. The Compton profile, , is related to the ground state electron momentum density as [16, 17] where integration is performed over a constant- plane, is scattering vector direction, and is given as where is the electron wave function and summation extends over all occupied states. In this paper,
References
[1]
P. Cervantes, Q. Williams, M. C?té, M. Rohlfing, M. L. Cohen, and S. G. Louie, “Band structures of CsCl-structured BaS and CaSe at high pressure: implications for metallization pressures of the alkaline earth chalcogenides,” Physical Review B, vol. 58, no. 15, pp. 9793–9800, 1998.
[2]
T. Lv, D. Chen, and M. Huang, “Quasiparticle band structures of BaO and BaS,” Journal of Applied Physics, vol. 100, Article ID 086103, 3 pages, 2006.
[3]
S. Drablia, H. Meradji, S. Ghemid, G. Nouet, and F. El Haj Hassan, “First principles investigation of barium chalcogenide ternary alloys,” Computational Materials Science, vol. 46, no. 2, pp. 376–382, 2009.
[4]
M. Uludoan, T. ?ain, A. Strachan, and W. A. Goddard III, “Ab-initio studies of pressure induced phase transitions in BaO,” Journal of Computer-Aided Materials Design, vol. 8, no. 2-3, pp. 193–202, 2001.
[5]
M. Alfredsson, J. P. Brodholt, P. B. Wilson et al., “Structural and magnetic phase transitions in simple oxides using hybrid functionals,” Molecular Simulation, vol. 31, no. 5, pp. 367–377, 2005.
[6]
S. T. Weir, Y. K. Vohra, and A. L. Ruoff, “High-pressure phase transitions and the equations of state of BaS and BaO,” Physical Review B, vol. 33, no. 6, pp. 4221–4226, 1986.
[7]
S. Drablia, H. Meradji, S. Ghemid, N. Boukhris, B. Bouhafs, and G. Nouet, “Electronic and optical properties of BaO, BaS, BaSe, BaTe and BaPo compounds under hydrostatic pressure,” Modern Physics Letters B, vol. 23, no. 26, pp. 3065–3079, 2009.
[8]
G. Q. Lin, H. Gong, and P. Wu, “Electronic properties of barium chalcogenides from first-principles calculations: tailoring wide-band-gap II-VI semiconductors,” Physical Review B, vol. 71, no. 8, Article ID 085203, 2005.
[9]
M. Ameri, A. Touia, H. Khachai, Z. Mahdjoub, M. Z. Chekroun, and A. Slamani, “Ab initio study of structural and electronic properties of barium chalcogenide alloys,” Materials Sciences and Applications, vol. 3, pp. 612–618, 2012.
[10]
Y. Kang, Y. S. Kim, Y. C. Chung, H. Kim, D. S. Kim, and J. J. Kim, “The evaluation of ultrasoft pseudopotential in predicting material properties of ionic systems by an ab-initio pseudopotential method,” Journal of Ceramic Processing Research, vol. 3, no. 3, pp. 171–173, 2002.
[11]
R. K. Singh, A. S. Verma, and S. K. Rathi, “Ground state properties of rock salt, CsCl, diamond and zinc blende structured solids,” The Open Condensed Matter Physics Journal, vol. 2, pp. 25–29, 2009.
[12]
M. Teng and X. Hong, “Phase transition and thermodynamic properties of BaS: an Ab initio study,” Wuhan University Journal of Natural Sciences, vol. 16, no. 1, pp. 33–37, 2011.
[13]
F. El Haj Hassan and H. Akbarzadeh, “First-principles elastic and bonding properties of barium chalcogenides,” Computational Materials Science, vol. 38, no. 2, pp. 362–368, 2006.
[14]
R. Khenata, M. Sahnoun, H. Baltache et al., “Structural, electronic, elastic and high-pressure properties of some alkaline-earth chalcogenides: an ab initio study,” Physica B, vol. 371, no. 1, pp. 12–19, 2006.
[15]
Z. Feng, H. Hu, Z. Lv, and S. Cui, “First-principles study of electronic and optical properties of BaS, BaSe and BaTe,” Central European Journal of Physics, vol. 8, no. 5, pp. 782–788, 2010.
[16]
M. J. Cooper, P. E. Mijnarends, N. Shiotani, N. Sakai, and A. Bansil, X-Ray Compton Scattering, Oxford Publishing Press, Oxford, UK, 2004.
[17]
M. J. Cooper, “Compton scattering and electron momentum determination,” Reports on Progress in Physics, vol. 48, no. 4, pp. 415–481, 1985.
[18]
R. R. Dovesi, V. R. Saunders, C. Roetti et al., CRYSTAL06 User’s Manual, University of Torino, Torino, Canada, 2006.
[19]
B. K. Sharma, A. Gupta, H. Singh, S. Perkki?, A. Kshirsagar, and D. G. Kanhere, “Compton profile of palladium,” Physical Review B, vol. 37, no. 12, pp. 6821–6826, 1988.
[20]
D. N. Timms, Compton scattering studies of spin and momentum densities [Ph.D. thesis], University of Warwick, Coventry, UK, 1989.
[21]
J. Felsteiner, P. Pattison, and M. Cooper, “Effect of multiple scattering on experimental Compton profiles: a Monte Carlo calculation,” Philosophical Magazine, vol. 30, no. 3, pp. 537–548, 1974.
[22]
F. Biggs, L. B. Mendelsohn, and J. B. Mann, “Hartree Fock Compton profiles for the elements,” Atomic Data and Nuclear Data Tables, vol. 16, no. 3, pp. 201–309, 1975.
[23]
R. Dovesi, R. Orlando, C. Roetti, C. Pisani, and V. R. Saunders, “The periodic Hartree-Fock method and its implementation in the CRYSTAL code,” Physica Status Solidi B, vol. 217, no. 1, pp. 63–88, 2000.
[24]
http://www.tcm.phy.cam.ac.uk/.
[25]
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996.
[26]
A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp. 3098–3100, 1988.
[27]
M. C. Mishra, G. Sharma, R. K. Kothari, Y. K. Vijay, and B. K. Sharma, “Electronic structure of CaX (X = O, S, Se) compounds using Compton spectroscopy,” Computational Materials Science, vol. 51, no. 1, pp. 340–346, 2012.
[28]
N. Munjal, G. Sharma, V. Vyas, K. B. Joshi, and B. K. Sharma, “Ab-initio study of structural and electronic properties of AlAs,” Philosophical Magazine, vol. 92, pp. 3101–3112, 2012.
[29]
G. Sharma, K. B. Joshi, M. C. Mishra et al., “Electronic structure of AlAs: a Compton profile study,” Journal of Alloys and Compounds, vol. 485, no. 1-2, pp. 682–686, 2009.
[30]
R. Kumar, N. Munjal, G. Sharma, V. Vyas, M. S. Dhaka, and B. K. Sharma, “Electron momentum density and phase transition in SrO,” Phase Transitions, vol. 85, no. 12, pp. 1098–1108, 2012.
[31]
W. A. Reed and P. Eisenberger, “Gamma-ray compton profiles of diamond, silicon, and germanium,” Physical Review B, vol. 6, no. 12, pp. 4596–4604, 1972.
[32]
G. Sharma, K. B. Joshi, M. C. Mishra, S. Shrivastava, Y. K. Vijay, and B. K. Sharma, “Electron momentum density in multiwall carbon nanotubes,” Physica E, vol. 43, no. 5, pp. 1084–1086, 2011.
[33]
M. C. Mishra, R. Kumar, G. Sharma, Y. K. Vijay, and B. K. Sharmab, “Size dependent electron momentum density distribution in ZnS,” Physica B, vol. 406, no. 22, pp. 4307–4311, 2011.
[34]
A. S. Verma, “An empirical model for bulk modulus and cohesive energy of rocksalt-, zincblende- and chalcopyrite-structured solids,” Physica Status Solidi B, vol. 246, no. 2, pp. 345–353, 2009.