全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

InAs/GaSb Type-II Superlattice Detectors

DOI: 10.1155/2014/246769

Full-Text   Cite this paper   Add to My Lib

Abstract:

InAs/(In,Ga)Sb type-II strained layer superlattices (T2SLs) have made significant progress since they were first proposed as an infrared (IR) sensing material more than three decades ago. Numerous theoretically predicted advantages that T2SL offers over present-day detection technologies, heterojunction engineering capabilities, and technological preferences make T2SL technology promising candidate for the realization of high performance IR imagers. Despite concentrated efforts of many research groups, the T2SLs have not revealed full potential yet. This paper attempts to provide a comprehensive review of the current status of T2SL detectors and discusses origins of T2SL device performance degradation, in particular, surface and bulk dark-current components. Various approaches of dark current reduction with their pros and cons are presented. 1. Introduction Since proposed in 1980s [1–3], the InAs/(In,Ga)Sb T2SL has gained a lot of interest for the infrared (IR) detection applications. Focal plane arrays (FPAs) based on T2SL and operating in mid-wave IR (MWIR, 3–5?μm) and long-wave IR (LWIR, 8–12?μm) are of great importance for a variety of civil and military applications. Currently market dominating technologies are based on bulk mercury cadmium telluride (MCT) and InSb [4–6], and GaAs/AlGaAs quantum well IR photodetectors (QWIPs). While MCT detectors have very large quantum efficiency (>90%) and detectivity, they are still plagued by nonuniform growth defects and a very expensive CdZnTe substrate that is only available in limited quantities by a foreign manufacturer. There has been significant progress on development of MCT on silicon substrates, but good performance has been limited to the MWIR band only. Moreover, MCT is characterized by low electron effective mass resulting in excessive leakage current [7]. The InSb detectors do not cover the LWIR spectral range. QWIPs are based on III-V semiconductors and their mature manufacturing process enables them to be scaled to large format FPAs with a high degree of spatial uniformity [8–10]. However, due to polarization selection rules for electron-photon interactions in GaAs/AlGaAs QW, this material system is insensitive to surface-normal incident IR radiation resulting in poor conversion quantum efficiency, In addition, their large dark currents lower the operating temperature and increase the operating cost of the imager. The development of FPAs based on mature III-V growth and fabrication technology and operating at higher temperatures will result in highly sensitive, more reliable, lighter, and less

References

[1]  G. A. Sai-Halasz, R. Tsu, and L. Esaki, “A new semiconductor superlattice,” Applied Physics Letters, vol. 30, no. 12, pp. 651–653, 1977.
[2]  L. Esaki, “InAs-GaSb superlattices-synthesized semiconductors and semimetals,” Journal of Crystal Growth, vol. 52, no. 1, pp. 227–240, 1981.
[3]  D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” Journal of Applied Physics, vol. 62, no. 6, pp. 2545–2548, 1987.
[4]  J. Rothman, E. D. Borniol, P. Ballet et al., “HgCdTe APD-Focal plane array performance at DEFIR,” in Infrared Technology and Applications XXXV, vol. 7298 of Proceedings of SPIE, pp. 729835–729845, April 2009.
[5]  J. M. Peterson, D. D. Lofgreen, J. A. Franklin et al., “MBE growth of HgCdTe on large-area Si and CdZnTe wafers for SWIR, MWIR and LWIR detection,” Journal of Electronic Materials, vol. 37, no. 9, pp. 1274–1282, 2008.
[6]  O. Nesher, I. Pivnik, E. Ilan et al., “High resolution 1280×1024, 15?μm pitch compact InSb IR detector with on-chip ADC,” in Infrared Technology and Applications XXXV, vol. 7298 of Proceedings of SPIE, April 2009.
[7]  A. Rogalski, “HgCdTe infrared detector material: history, status and outlook,” Reports on Progress in Physics, vol. 68, no. 10, pp. 2267–2336, 2005.
[8]  H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors, Springer Series in Optical Sciences, Springer, 2007.
[9]  A. Soibel, S. V. Bandara, D. Z. Ting et al., “A super-pixel QWIP focal plane array for imaging multiple waveband temperature sensor,” Infrared Physics and Technology, vol. 52, no. 6, pp. 403–407, 2009.
[10]  A. Nedelcu, V. Guériaux, A. Bazin et al., “Enhanced quantum well infrared photodetector focal plane arrays for space applications,” Infrared Physics and Technology, vol. 52, no. 6, pp. 412–418, 2009.
[11]  C. Cervera, I. Ribet-Mohamed, R. Taalat, J. P. Perez, P. Christol, and J. B. Rodriguez, “Dark current and noise measurements of an InAs/GaSb superlattice photodiode operating in the midwave infrared domain,” Journal of Electronic Materials, vol. 41, pp. 2714–2718, 2012.
[12]  N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, “Performance improvement of longwave infrared photodetector based on type-II InAs/GaSb superlattices using unipolar current blocking layers,” Applied Physics Letters, vol. 96, no. 23, Article ID 231107, 2010.
[13]  Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications,” Applied Physics Letters, vol. 80, no. 18, pp. 3262–3264, 2002.
[14]  Y. Lacroix, C. A. Tran, S. P. Watkins, and M. L. W. Thewalt, “Low-temperature photoluminescence of epitaxial InAs,” Journal of Applied Physics, vol. 80, no. 11, pp. 6416–6424, 1996.
[15]  P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: an emerging optoelectronic material,” Journal of Applied Physics, vol. 81, no. 9, pp. 5821–5870, 1997.
[16]  M. Levinshtein, S. Rumyantsev, and M. Shur, Eds., Handbook Series on Semiconductor Parameters, vol. 1 and 2, World Scientific, 1996.
[17]  A. Joullié, A. Z. Eddin, and B. Girault, “Temperature dependence of the energy gap in gallium antimonide,” Physical Review B, vol. 23, no. 2, pp. 928–930, 1981.
[18]  E. Adachi, “Energy band parameters of InAs at various temperatures,” Journal of the Physical Society of Japan, vol. 24, no. 5, p. 1178, 1968.
[19]  C. Alibert, A. Joullie, and A. M. Joullie, “Modulation-spectroscopy study of the GaAlSb band structure,” Physical Review B, vol. 27, p. 4946, 1983.
[20]  M. B. Thomas and J. C. Woolley, “Plasma edge reflectance measurements in GaInAs and InAsSb alloys,” Canadian Journal of Physics, vol. 49, p. 2052, 1971.
[21]  D. C. Tsui, “Landau-level spectra of conduction electrons at an InAs surface,” Physical Review B, vol. 12, no. 12, pp. 5739–5748, 1975.
[22]  R. A. Stradling and R. A. Wood, “The temperature dependence of the band-edge effective masses of InSb, InAs and GaAs as deduced from magnetophonon magnetoresistance measurements,” Journal of Physics C: Solid State Physics, vol. 3, no. 5, article 005, pp. L94–L99, 1970.
[23]  C. Ghezzi, R. Magnanini, A. Parisini et al., “Optical absorption near the fundamental absorption edge in GaSb,” Physical Review B, vol. 52, no. 3, pp. 1463–1466, 1995.
[24]  H. Arimoto, N. Miura, R. J. Nicholas, N. J. Mason, and P. J. Walker, “High-field cyclotron resonance in the conduction bands of GaSb and effective-mass parameters at the L points,” Physical Review B, vol. 58, no. 8, pp. 4560–4565, 1998.
[25]  E. R. Youngdale, J. R. Meyer, C. A. Hoffman et al., “Auger lifetime enhancement in InAs-Ga1-xInxSb superlattices,” Applied Physics Letters, vol. 64, no. 23, pp. 3160–3162, 1994.
[26]  G. M. Williams, “Comment on “Temperature limits on infrared detectivities of InAs/InxGa1?xSb superlattices and bulk HgxCd1?x Te” [J. Appl. Phys. 74, 4774 (1993)],” Journal of Applied Physics, vol. 77, no. 8, pp. 4153–4155, 1995.
[27]  M. E. Flatté, C. H. Grein, H. Ehrenreich, R. H. Miles, and H. Cruz, “Theoretical performance limits of 2.1-4.1?μm InAs/InGaSb, HgCdTe, and InGaAsSb lasers,” Journal of Applied Physics, vol. 78, no. 7, pp. 4552–4561, 1995.
[28]  K. Abu El-Rub, C. H. Grein, M. E. Flatte, and H. Ehrenreich, “Band structure engineering of superlattice-based short-, mid-, and long-wavelength infrared avalanche photodiodes for improved impact ionization rates,” Journal of Applied Physics, vol. 92, no. 7, pp. 3771–3778, 2002.
[29]  M. E. Flatté and C. H. Grein, “Theory and modeling of type-II strained-layer superlattice detectors,” in Quantum Sensing and Nanophotonic Devices VI, vol. 7222 of Proceedings of SPIE, January 2009.
[30]  M. E. Flatté and C. E. Pryor, “Defect states in type-II strained-layer superlattices,” in Quantum Sensing and Nanophotonic Devices VII, vol. 7608 of Proceedings of SPIE, January 2010.
[31]  Y. Livneh, P. Klipstein, O. Klin et al., “kp model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices,” Physical Review B, vol. 86, Article ID 235311, 2012.
[32]  P.-F. Qiao, S. Mou, and S. L. Chuang, “Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect,” Optics Express, vol. 20, no. 3, pp. 2319–2334, 2013.
[33]  P. C. Klipstein, “Operator ordering and interface-band mixing in the Kane-like Hamiltonian of lattice-matched semiconductor superlattices with abrupt interfaces,” Physical Review B, vol. 81, no. 23, Article ID 235314, 2010.
[34]  G. C. Dente and M. L. Tilton, “Pseudopotential methods for superlattices: applications to mid-infrared semiconductor lasers,” Journal of Applied Physics, vol. 86, no. 3, pp. 1420–1429, 1999.
[35]  R. Kaspi, C. Moeller, A. Ongstad et al., “Absorbance spectroscopy and identification of valence subband transitions in type-II InAs/GaSb superlattices,” Applied Physics Letters, vol. 76, no. 4, pp. 409–411, 2000.
[36]  G. C. Dente and M. L. Tilton, “Comparing pseudopotential predictions for InAs/GaSb superlattices,” Physical Review B, vol. 66, no. 16, Article ID 165307, 2002.
[37]  J. M. Masur, R. Rehm, J. Schmitz, L. Kirste, and M. Walther, “Four-component superlattice empirical pseudopotential method for InAs/GaSb superlattices,” Infrared Physics & Technology, vol. 61, pp. 129–133, 2013.
[38]  S. Bandara, P. G. Maloney, N. Baril, J. G. Pellegrino, and M. Z. Tidrow, “Doping dependence of minority carrier lifetime in long-wave Sb-based type II superlattice infrared detector materials,” Optical Engineering, vol. 50, no. 6, Article ID 061015, 2011.
[39]  J. Pellegrino and R. DeWames, “Minority carrier lifetime characteristics in type II InAs/GaSb LWIR superlattice n+πp+ photodiodes,” in Infrared Technology and Applications XXXV, vol. 7298 of Proceedings of SPIE, April 2009.
[40]  L. Bürkle, F. Fuchs, J. Schmitz, and W. Pletschen, “Control of the residual doping of InAs/(GaIn)Sb infrared superlattices,” Applied Physics Letters, vol. 77, no. 11, pp. 1659–1661, 2000.
[41]  X. B. Zhang, J. H. Ryou, R. D. Dupuis et al., “Improved surface and structural properties of InAs/GaSb superlattices on (001) GaSb substrate by introducing an InAsSb layer at interfaces,” Applied Physics Letters, vol. 90, no. 13, Article ID 131110, 2007.
[42]  X. B. Zhang, J. H. Ryou, R. D. Dupuis et al., “Metalorganic chemical vapor deposition growth of high-quality InAsGaSb type II superlattices on (001) GaAs substrates,” Applied Physics Letters, vol. 88, no. 7, Article ID 072104, 2006.
[43]  A. Jallipalli, G. Balakrishnan, S. H. Huang et al., “Structural analysis of highly relaxed GaSb grown on GaAs substrates with periodic interfacial array of 90° misfit dislocations,” Nanoscale Research Letters, vol. 4, no. 12, pp. 1458–1462, 2009.
[44]  G. Umana-Membreno, B. Klein, H. Kala et al., “Vertical minority carrier electron transport in p-type InAs/GaSb type-II superlattices,” Applied Physics Letters, vol. 101, no. 25, Article ID 253515, 2012.
[45]  P. Christol, L. Konczewicz, Y. Cuminal, H. A?t-Kaci, J. B. Rodriguez, and A. Joullié, “Electrical properties of short period InAs/GaSb superlattice,” Physica Status Solidi C, vol. 4, no. 4, pp. 1494–1498, 2007.
[46]  C. Cervera, J. B. Rodriguez, J. P. Perez et al., “Unambiguous determination of carrier concentration and mobility for InAs/GaSb superlattice photodiode optimization,” Journal of Applied Physics, vol. 106, no. 3, Article ID 033709, 2009.
[47]  H. J. Haugan, S. Elhamri, F. Szmulowicz, B. Ullrich, G. J. Brown, and W. C. Mitchel, “Study of residual background carriers in midinfrared InAsGaSb superlattices for unfcooled detector operation,” Applied Physics Letters, vol. 92, no. 7, Article ID 071102, 2008.
[48]  F. Szmulowicz, S. Elhamri, H. J. Haugan, G. J. Brown, and W. C. Mitchel, “Demonstration of interface-scattering-limited electron mobilities in InAs/GaSb superlattices,” Journal of Applied Physics, vol. 101, no. 4, Article ID 043706, 2007.
[49]  F. Szmulowicz, S. Elhamri, H. J. Haugan, G. J. Brown, and W. C. Mitchel, “Carrier mobility as a function of carrier density in type-II InAs/GaSb superlattices,” Applied Physics Letters, vol. 105, Article ID 074303, 2009.
[50]  K. Mahalingam, H. J. Haugan, G. J. Brown, and A. J. Aronow, “Strain analysis of compositionally tailored interfaces in InAs/GaSb superlattices,” Applied Physics Letters, vol. 103, no. 21, Article ID 211605, 2013.
[51]  H. Kim, Y. Meng, J. L. Rouviere, D. Isheim, D. N. Seidman, and J. M. Zuo, “Atomic resolution mapping of interfacial intermixing and segregation in InAs/GaSb superlattices: a correlative study,” Journal of Applied Physics, vol. 113, no. 10, Article ID 103511, 2013.
[52]  Z. Xu, J. Chen, F. Wang, Y. Zhou, C. Jin, and L. He, “Interface layer control and optimization of InAs/GaSb type-II superlattices grown by molecular beam epitaxy,” Journal of Crystal Growth, vol. 386, pp. 220–225, 2014.
[53]  B. Arikan, G. Korkmaz, Y. E. Suyolcu, B. Aslan, and U. Serincan, “On the structural characterization of InAs/GaSb type-II superlattices: the effect of interfaces for fixed layer thicknesses,” Thin Solid Films, vol. 548, pp. 288–291, 2013.
[54]  Y. Ashuach, Y. Kauffmann, C. Saguy et al., “Quantification of atomic intermixing in short-period InAs/GaSb superlattices for infrared photodetectors,” Journal of Applied Physics, vol. 113, no. 18, Article ID 184305, 2013.
[55]  J. Steinshnider, M. Weimer, R. Kaspi, and G. W. Turner, “Visualizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy,” Physical Review Letters, vol. 85, no. 14, pp. 2953–2956, 2000.
[56]  J. Steinshnider, J. Harper, M. Weimer, C.-H. Lin, S. S. Pei, and D. H. Chow, “Origin of antimony segregation in GaInSb/InAs strained-layer superlattices,” Physical Review Letters, vol. 85, no. 21, pp. 4562–4565, 2000.
[57]  R. Kaspi, J. Steinshnider, M. Weimer, C. Moeller, and A. Ongstad, “As-soak control of the InAs-on-GaSb interface,” Journal of Crystal Growth, vol. 225, no. 2–4, pp. 544–549, 2001.
[58]  R. Kaspi, “Compositional abruptness at the InAs-on-GaSb interface: optimizing growth by using the Sb desorption signature,” Journal of Crystal Growth, vol. 201-202, pp. 864–867, 1999.
[59]  P. M. Thibado, B. R. Bennett, M. E. Twigg, B. V. Shanabrook, and L. J. Whitman, “Origins of interfacial disorder in GaSb/InAs superlattices,” Applied Physics Letters, vol. 67, pp. 3578–3580, 1995.
[60]  E. M. Jackson, G. I. Boishin, E. H. Aifer, B. R. Bennett, and L. J. Whitman, “Arsenic cross-contamination in GaSb/InAs superlattices,” Journal of Crystal Growth, vol. 270, no. 3-4, pp. 301–308, 2004.
[61]  E. Luna, B. Satpati, J. B. Rodriguez, A. N. Baranov, E. Tourní, and A. Trampert, “Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy,” Applied Physics Letters, vol. 96, no. 2, Article ID 021904, 2010.
[62]  M. A. Kinch, “Fundamental physics of infrared detector materials,” Journal of Electronic Materials, vol. 29, no. 6, pp. 809–817, 2000.
[63]  A. Rogalski, “Third-generation infrared photon detectors,” Optical Engineering, vol. 42, no. 12, pp. 3498–3516, 2003.
[64]  A. Rogalski, “Infrared detectors: status and trends,” Progress in Quantum Electronics, vol. 27, no. 2-3, pp. 59–210, 2003.
[65]  C. Downs and T. E. Vanderveld, “Progress in infrared photodetectors since 2000,” Sensors, vol. 13, pp. 5054–5098, 2013.
[66]  M. Walther, J. Schmitz, R. Rehm et al., “Growth of InAs/GaSb short-period superlattices for high-resolution mid-wavelength infrared focal plane array detectors,” Journal of Crystal Growth, vol. 278, no. 1–4, pp. 156–161, 2005.
[67]  Y. Wei, A. Hood, H. Yau et al., “Uncooled operation of type-II InAs/GaSb superlattice photodiodes in the midwavelength infrared range,” Applied Physics Letters, vol. 86, no. 23, Article ID 233106, pp. 1–3, 2005.
[68]  E. Plis, J. B. Rodriguez, H. S. Kim et al., “Type II InAsGaSb strain layer superlattice detectors with p-on-n polarity,” Applied Physics Letters, vol. 91, no. 13, Article ID 133512, 2007.
[69]  I. Vurgaftman, E. H. Aifer, C. L. Canedy et al., “Graded band gap for dark-current suppression in long-wave infrared W-structured type-II superlattice photodiodes,” Applied Physics Letters, vol. 89, no. 12, Article ID 121114, 2006.
[70]  D. Z.-Y. Ting, C. J. Hill, A. Soibel et al., “A high-performance long wavelength superlattice complementary barrier infrared detector,” Applied Physics Letters, vol. 95, no. 2, Article ID 023508, 2009.
[71]  P. Y. Delaunay and M. Razeghi, “Spatial noise and correctability of type-II InAs/GaSb focal plane arrays,” IEEE Journal of Quantum Electronics, vol. 46, no. 4, pp. 584–588, 2010.
[72]  N. Gautam, S. Myers, A. V. Barve et al., “Barrier engineered infrared photodetectors based on type-II InAs/GaSb strained layer superlattices,” IEEE Journal of Quantum Electronics, vol. 49, no. 2, pp. 211–217, 2013.
[73]  Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, “Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32?μm,” Applied Physics Letters, vol. 81, no. 19, pp. 3675–3677, 2002.
[74]  A. Hood, M. Razeghi, E. H. Aifer, and G. J. Brown, “On the performance and surface passivation of type II InAs/GaSb superlattice photodiodes for the very-long-wavelength infrared,” Applied Physics Letters, vol. 87, no. 15, Article ID 151113, pp. 1–3, 2005.
[75]  S. D. Gunapala, D. Z. Ting, C. J. Hill et al., “Demonstration of a 1024 × 1024 Pixel InAsGaSb superlattice focal plane array,” IEEE Photonics Technology Letters, vol. 22, no. 24, pp. 1856–1858, 2010.
[76]  A. Haddadi, S. Ramezani-Darvish, G. Chen, A. M. Hoang, B.-M. Nguyen, and M. Razeghi, “High operability 1024 × 1024 long wavelength type-II superlattice focal plane array,” IEEE Journal of Quantum Electronics, vol. 48, no. 2, pp. 221–228, 2012.
[77]  A. M. Hoang, G. Chen, A. Haddadi, and M. Razeghi, “Demonstration of high-performance biasselectable dual-band short-mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices,” Applied Physics Letters, vol. 102, Article ID 011108, 2013.
[78]  R. Rehm, M. Walther, F. Rutz et al., “Dual-color InAs/GaSb superlattice focal-plane array technology,” Journal of Electronic Materials, vol. 40, no. 8, pp. 1738–1743, 2011.
[79]  A. Khoshakhlagh, J. B. Rodriguez, E. Plis et al., “Bias dependent dual band response from InAsGa (In) Sb type II strain layer superlattice detectors,” Applied Physics Letters, vol. 91, no. 26, Article ID 263504, 2007.
[80]  E. Plis, S. S. Krishna, E. P. Smith, S. Johnson, and S. Krishna, “Voltage controllable dual-band response from InAs/GaSb strained layer superlattice detectors with nBn design,” Electronics Letters, vol. 47, no. 2, pp. 133–134, 2011.
[81]  J. Huang, W. Ma, C. Cao et al., “Mid wavelength type II InAs/GaSb superlattice photodetector using SiOxNy passivation,” Japanese Journal of Applied Physics, vol. 51, Article ID 074002, 2012.
[82]  N. Gautam, M. Naydenkov, S. Myers et al., “Three color infrared detector using InAs/GaSb superlattices with unipolar barriers,” Applied Physics Letters, vol. 98, no. 12, Article ID 121106, 2011.
[83]  B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Dark current suppression in type II InAsGaSb superlattice long wavelength infrared photodiodes with M-structure barrier,” Applied Physics Letters, vol. 91, no. 16, Article ID 163511, 2007.
[84]  E. H. Aifer, J. H. Warner, C. L. Canedy et al., “Shallow-etch mesa isolation of graded-bandgap W-structured type II superlattice photodiodes,” Journal of Electronic Materials, vol. 39, pp. 1070–1079, 2010.
[85]  O. Salihoglu, A. Muti, K. Kutluer et al., “N-structure for type-II superlattice photodetectors,” Applied Physics Letters, vol. 101, no. 7, Article ID 073505, 2012.
[86]  J. B. Rodriguez, E. Plis, G. Bishop et al., “NBn structure based on InAs/GaSb type-II strained layer superlattices,” Applied Physics Letters, vol. 91, no. 4, Article ID 043514, 2008.
[87]  H. S. Kim, E. Plis, J. B. Rodriguez et al., “Mid-IR focal plane array based on type-II InAsGaSb strain layer superlattice detector with nBn design,” Applied Physics Letters, vol. 92, no. 18, Article ID 183502, 2008.
[88]  A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” Journal of Applied Physics, vol. 105, no. 9, Article ID 091101, 2009.
[89]  A. Rogalski, “Progress in focal plane array technologies,” Progress in Quantum Electronics, vol. 36, p. 342, 2012.
[90]  M. Sundaram, A. Reisinger, R. Dennis et al., “Evolution of array format of longwave infrared Type-II SLS FPAs with high quantum efficiency,” Infrared Physics & Technology, vol. 59, pp. 12–17, 2013.
[91]  M. Razeghi, A. Haddadi, A. Hoang et al., “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices,” Infrared Physics & Technology, vol. 59, pp. 41–52, 2013.
[92]  D. Z. Ting, A. Soibel, S. A. Keo et al., “Development of quantum well, quantum dot, and type II superlattice infrared photodetectors,” Journal of Applied Remote Sensing, vol. 8, Article ID 084998, 2014.
[93]  D. R. Rhiger, “Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe,” Journal of Electronic Materials, vol. 40, no. 8, pp. 1815–1822, 2011.
[94]  A. Rogalski, New Ternary Alloy Systems for Infrared Detectors, SPIE, Bellingham, Wash, USA, 1994.
[95]  S. Maimon and G. W. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature,” Applied Physics Letters, vol. 89, no. 15, Article ID 151109, 2006.
[96]  W. Shockley and J. W. T. Read, “Statistics of the recombinations of holes and electrons,” Physical Review, vol. 87, no. 5, pp. 835–842, 1952.
[97]  W. Walukiewicz, “Defect reactions at metal-semiconductor and semiconductor-semiconductor interfaces,” Materials Research Society Symposium Proceedings, vol. 148, p. 137, 1989.
[98]  S. P. Svensson, D. Donetsky, D. Wang, H. Hier, F. J. Crowne, and G. Belenky, “Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization,” Journal of Crystal Growth, vol. 334, no. 1, pp. 103–107, 2011.
[99]  B. C. Connelly, G. D. Metcalfe, H. Shen, and M. Wraback, “Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence,” Applied Physics Letters, vol. 97, no. 25, Article ID 251117, 2010.
[100]  E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe et al., “Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb,” Applied Physics Letters, vol. 99, no. 25, Article ID 251110, 2011.
[101]  G. Belenky, G. Kipshidze, D. Donetsky et al., “Effects of carrier concentration and phonon energy on carrier lifetime in Type-2 SLS and properties of InAs1-XSbX alloys,” in Infrared Technology and Applications XXXVII, vol. 8012 of Proceedings of SPIE, April 2011.
[102]  L. Murray, K. Lokovic, B. Olson, A. Yildirim, T. Boggess, and J. Prineas, “Effects of growth rate variations on carrier lifetime and interface structure in InAs/GaSb superlattices,” Journal of Crystal Growth, vol. 386, pp. 194–198, 2014.
[103]  Q. K. Yang, C. Pfahler, J. Schmitz, W. Pletschen, and F. Fuchs, “Trap centers and minority carrier lifetimes in InAs/(GaIn)Sb superlattice long wavelength photodetectors,” in Quantum Sensing: Evolution and Revolution from Past to Future, vol. 4999 of Proceedings of SPIE, pp. 448–456, January 2003.
[104]  E. C. F. Da Silva, D. Hoffman, A. Hood, B. M. Nguyen, P. Y. Delaunay, and M. Razeghi, “Influence of residual impurity background on the nonradiative recombination processes in high purity InAsGaSb superlattice photodiodes,” Applied Physics Letters, vol. 89, no. 24, Article ID 243517, 2006.
[105]  H. Mohseni, M. Razeghi, G. J. Brown, and Y. S. Park, “High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range,” Applied Physics Letters, vol. 78, no. 15, pp. 2107–2109, 2001.
[106]  J. V. Li, S. L. Chuang, E. M. Jackson, and E. Aifer, “Minority carrier diffusion length and lifetime for electrons in a type-II InAs/GaSb superlattice photodiode,” Applied Physics Letters, vol. 85, no. 11, pp. 1984–1986, 2004.
[107]  D. Donetsky, G. Belenky, S. Svensson, and S. Suchalkin, “Minority carrier lifetime in type-2 InAs-GaSb strained-layer superlattices and bulk HgCdTe materials,” Applied Physics Letters, vol. 97, no. 5, Article ID 052108, 2010.
[108]  B. V. Olson, E. A. Shaner, J. K. Kim et al., “Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice,” Applied Physics Letters, vol. 101, Article ID 092109, 2012.
[109]  D. Lackner, M. Steger, M. L. W. Thewalt et al., “InAs/InAsSb strain balanced superlattices for optical detectors: material properties and energy band simulations,” Journal of Applied Physics, vol. 111, no. 3, Article ID 034507, 2012.
[110]  C. M. Ciesla, B. N. Murdin, C. R. Pidgeon et al., “Suppression of Auger recombination in arsenic-rich InAs1-xSbx strained layer super-lattices,” Journal of Applied Physics, vol. 80, no. 5, pp. 2994–2997, 1996.
[111]  T. Schuler-Sandy, S. Myers, B. Klein et al., “Gallium free type II InAs/InAsxSb1-x superlattice photodetectors,” Applied Physics Letters, vol. 101, no. 7, Article ID 071111, 2012.
[112]  O. O. Cellek, Z. Y. He, Z. Y. Lin, H. S. Kim, S. Liu, and Y. H. Zhang, “InAs/InAsSb type-II superlattice infrared nBn photodetectors and their potential for operation at high temperatures,” in Quantum Sensing and Nanophotonic Devices X, vol. 8631 of Proceedings of SPIE, 2013.
[113]  B. V. Olson, E. A. Shaner, J. K. Kim et al., “Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys,” Applied Physics Letters, vol. 103, no. 5, Article ID 052106, 2013.
[114]  R. Q. Yang, Z. Tian, J. F. Klem, T. D. Mishima, M. B. Santos, and M. B. Johnson, “Interband cascade photovoltaic devices,” Applied Physics Letters, vol. 96, no. 6, Article ID 063504, 2010.
[115]  R. Q. Yang, Z. Tian, Z. Cai, J. F. Klem, M. B. Johnson, and H. C. Liu, “Interband-cascade infrared photodetectors with superlattice absorbers,” Journal of Applied Physics, vol. 107, no. 5, Article ID 054514, 2010.
[116]  A. Tian, R. T. Hinkey, R. Q. Yang et al., “Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers,” Journal of Applied Physics, vol. 111, no. 2, Article ID 024510, 2012.
[117]  N. Gautam, S. Myers, A. V. Barve et al., “High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice,” Applied Physics Letters, vol. 101, no. 2, Article ID 021106, 2012.
[118]  Z. B. Tian, T. Schuler-Sandy, and S. Krishna, “Electron barrier study of mid-wave infrared interband cascade photodetectors,” Applied Physics Letters, vol. 103, Article ID 083601, 2013.
[119]  K. Banerjee, S. Ghosh, S. Mallick, E. Plis, S. Krishna, and C. Grein, “Midwave infrared InAs/GaSb strained layer superlattice hole avalanche photodiode,” Applied Physics Letters, vol. 94, no. 20, Article ID 201107, 2009.
[120]  S. Mallick, K. Banerjee, S. Ghosh, J. B. Rodriguez, and S. Krishna, “Midwavelength infrared avalanche photodiode using InAs-GaSb strain layer superlattice,” IEEE Photonics Technology Letters, vol. 19, no. 22, pp. 1843–1845, 2007.
[121]  S. Mallick, K. Banerjee, S. Ghosh et al., “Ultralow noise midwave infrared InAs-GaSb strain layer superlattice avalanche photodiode,” Applied Physics Letters, vol. 91, no. 24, Article ID 241111, 2007.
[122]  A. P. Ongstad, R. Kaspi, C. E. Moeller et al., “Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-II superlattices,” Journal of Applied Physics, vol. 89, no. 4, pp. 2185–2188, 2001.
[123]  P.-Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, “Passivation of type-II InAsGaSb double heterostructure,” Applied Physics Letters, vol. 91, no. 9, Article ID 091112, 2007.
[124]  E. Plis, M. N. Kutty, and S. Krishna, “Passivation techniques for InAs/GaSb strained layer superlattice detectors,” Laser & Photonics Reviews, vol. 7, pp. 1–15, 2012.
[125]  F. M. Mohammedy and M. J. Deen, “Growth and fabrication issues of GaSb-based detectors,” Journal of Materials Science: Materials in Electronics, vol. 20, no. 11, pp. 1039–1058, 2009.
[126]  G. J. Brown, “Type-II InAs/GaInSb superlattices for infrared detection: an overview,” in Infrared Technology and Applications XXXI, vol. 5783 of Proceedings of SPIE, pp. 65–77, April 2005.
[127]  K. Banerjee, S. Ghosh, E. Plis, and S. Krishna, “Study of short-and long-term effectiveness of ammonium sulfide as surface passivation for InAs/GaSb superlattices using X-ray photoelectron spectroscopy,” Journal of Electronic Materials, vol. 39, no. 10, pp. 2210–2214, 2010.
[128]  T. Wada and N. Kitamura, “X-Ray photoelectron spectra of an electron-beam oxide layer on GaSb,” Japanese Journal of Applied Physics, vol. 27, no. 4, pp. 686–687, 1988.
[129]  E. Plis, M. N. Kutty, S. Myers et al., “Passivation of long-wave infrared InAs/GaSb strained layer superlattice detectors,” Infrared Physics and Technology, vol. 54, no. 3, pp. 252–257, 2011.
[130]  A. Gin, Y. Wei, J. Bae, A. Hood, J. Nah, and M. Razeghi, “Passivation of type II InAs/GaSb superlattice photodiodes,” Thin Solid Films, vol. 447-448, pp. 489–492, 2004.
[131]  E. K. Huang, B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Inductively coupled plasma etching and processing techniques for type-II InAs/GaSb superlattices infrared detectors toward high fill factor focal plane arrays,” in Quantum Sensing and Nanophotonic Devices VI, vol. 7222 of Proceedings of SPIE, January 2009.
[132]  E. K.-W. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, “Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes,” Applied Physics Letters, vol. 94, no. 5, Article ID 053506, 2009.
[133]  R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, “Passivation of InAs/(GaIn) Sb short-period superlattice photodiodes with 10?μm cutoff wavelength by epitaxial overgrowth with AlxGa1-xAsySb1-y,” Applied Physics Letters, vol. 86, no. 17, Article ID 173501, pp. 1–3, 2005.
[134]  B.-M. Nguyen, D. Hoffman, E. K.-W. Huang, P.-Y. Delaunay, and M. Razeghi, “Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K,” Applied Physics Letters, vol. 93, no. 12, Article ID 123502, 2008.
[135]  R. Chaghi, C. Cervera, H. A?t-Kaci, P. Grech, J. B. Rodriguez, and P. Christol, “Wet etching and chemical polishing of InAs/GaSb superlattice photodiodes,” Semiconductor Science and Technology, vol. 24, no. 6, Article ID 065010, 2009.
[136]  C. Cervera, J. B. Rodriguez, R. Chaghi, H. At-Kaci, and P. Christol, “Characterization of midwave infrared InAs/GaSb superlattice photodiode,” Journal of Applied Physics, vol. 106, no. 2, Article ID 024501, 2009.
[137]  Y. Chen, A. Moy, S. Xin, K. Mi, and P. P. Chow, “Improvement of R0A product of type-II InAs/GaSb superlattice MWIR/LWIR photodiodes,” Infrared Physics and Technology, vol. 52, no. 6, pp. 340–343, 2009.
[138]  S. dip Das, S. L. Tan, S. Zhang, Y. L. Goh, C. H. Ting, and J. David, “Development of LWIR photodiodes based on InAs/GaSb type-II strained layer superlattices,” in Proceedings of the 6th EMRS DTC Technical Conference, vol. B7, Edinburgh, UK, 2009.
[139]  M. N. Kutty, E. Plis, A. Khoshakhlagh et al., “Study of surface treatments on InAs/GaSb superlattice lwir detectors,” Journal of Electronic Materials, vol. 39, no. 10, pp. 2203–2209, 2010.
[140]  M. Sundaram, A. Reisinger, R. Dennis et al., “Longwave infrared focal plane arrays from type-II strained layer superlattices,” Infrared Physics and Technology, vol. 54, no. 3, pp. 243–246, 2011.
[141]  Y. T. Kim, D. S. Kim, and D. H. Yoon, “PECVD SiO2 and SiON films dependant on the rf bias power for low-loss silica waveguide,” Thin Solid Films, vol. 475, no. 1-2, pp. 271–274, 2005.
[142]  J. A. Nolde, R. Stine, E. M. Jackson et al., “Effect of the oxide-semiconductor interface on the passivation of hybrid type-II superlattice long-wave infrared photodiodes,” in Quantum Sensing and Nanophotonic Devices VIII, vol. 7945 of Proceedings of SPIE, January 2011.
[143]  G. Chen, B.-M. Nguyen, A. M. Hoang, E. K. Huang, S. R. Darvish, and M. Razeghi, “Elimination of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors,” Applied Physics Letters, vol. 99, no. 18, Article ID 183503, 2011.
[144]  T. Tansel, K. Kutluer, ?. Salihoglu et al., “Effect of the passivation layer on the noise characteristics of mid-wave-infrared InAs/GaSb superlattice photodiodes,” IEEE Photonics Technology Letters, vol. 24, no. 9, pp. 790–792, 2012.
[145]  A. Hood, P.-Y. Delaunay, D. Hoffman et al., “Near bulk-limited R0A of long-wavelength infrared type-II InAs/GaSb superlattice photodiodes with polyimide surface passivation,” Applied Physics Letters, vol. 90, no. 23, Article ID 233513, 2007.
[146]  H. S. Kim, E. Plis, A. Khoshakhlagh et al., “Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation,” Applied Physics Letters, vol. 96, no. 3, Article ID 033502, 2010.
[147]  E. A. DeCuir Jr., J. W. Little, and N. Baril, “Addressing surface leakage in type-II InAs/GaSb superlattice materials using novel approaches to surface passivation,” in Infrared Sensors, Devices, and Applications; and Single Photon Imaging II, vol. 8155 of Proceedings of SPIE, August 2011.
[148]  H. S. Kim, E. Plis, N. Gautam et al., “Reduction of surface leakage current in InAs/GaSb strained layer long wavelength superlattice detectors using SU-8 passivation,” Applied Physics Letters, vol. 97, no. 14, Article ID 143512, 2010.
[149]  D. Sanchez, L. Cerutti, and E. Tournie, “Selective lateral etching of InAs/GaSb tunnel junctions for mid-infrared photonics,” Semiconductor Science and Technology, vol. 27, no. 8, Article ID 085011, 2012.
[150]  G. A. Umana-Membreno, H. Kalaa, B. Klein et al., “Electronic transport in InAs/GaSb type-II superlattices for long wavelength infrared focal plane array applications,” in Infrared Technology and Applications XXXVIII, vol. 8353 of Proceedings of SPIE, May 2012.
[151]  C. J. Sandroff, M. S. Hegde, and C. C. Chang, “Structure and stability of passivating arsenic sulfide phases on GaAs surfaces,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 7, pp. 841–844, 1989.
[152]  C. J. Spindt, D. Liu, K. Miyano et al., “Vacuum ultraviolet photoelectron spectroscopy of (NH4)2S-treated GaAs (100) surfaces,” Applied Physics Letters, vol. 55, no. 9, pp. 861–863, 1989.
[153]  V. N. Bessolov, E. V. Konenkova, and M. V. Lebedev, “Sulfidization of GaAs in alcoholic solutions: a method having an impact on efficiency and stability of passivation,” Materials Science and Engineering B, vol. 44, no. 1–3, pp. 376–379, 1997.
[154]  H. Oigawa, J.-F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2Sx treatment on the surface of III-V compound semiconductors,” Japanese Journal of Applied Physics, vol. 30, no. 3, pp. 322–325, 1991.
[155]  D. Y. Petrovykh, M. J. Yang, and L. J. Whitman, “Chemical and electronic properties of sulfur-passivated InAs surfaces,” Surface Science, vol. 523, no. 3, pp. 231–240, 2003.
[156]  M. Pérotin, P. Coudray, L. Gouskov et al., “Passivation of GaSb by sulfur treatment,” Journal of Electronic Materials, vol. 23, no. 1, pp. 7–12, 1994.
[157]  P. S. Dutta, K. S. Sangunni, H. L. Bhat, and V. Kumar, “Sulphur passivation of gallium antimonide surfaces,” Applied Physics Letters, vol. 65, no. 13, pp. 1695–1697, 1994.
[158]  S. Basu and P. Barman, “Chemical modification and characterization of Te-doped n-GaSb (111) single crystals for device application,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 10, no. 3, pp. 1078–1080, 1992.
[159]  V. N. Bessolov, M. V. Lebedev, E. B. Novikov, and B. V. Tsarenkov, “Sulfide passivation of III-V semiconductors: kinetics of the photoelectrochemical reaction,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 11, pp. 10–14, 1993.
[160]  V. N. Bessolov, Y. V. Zhilyaev, E. V. Konenkova, and M. V. Lebedev, “Sulfide passivation of III-V semiconductor surfaces: role of the sulfur ionic charge and of the reaction potential of the solution,” Journal of Technical Physics, vol. 43, no. 8, pp. 983–985, 1998.
[161]  T. Ohno, “Passivation of GaAs(001) surfaces by chalcogen atoms (S, Se and Te),” Surface Science, vol. 255, no. 3, pp. 229–236, 1991.
[162]  T. Ohno and K. Shiraishi, “First-principles study of sulfur passivation of GaAs(001) surfaces,” Physical Review B, vol. 42, no. 17, pp. 11194–11197, 1990.
[163]  A. Gin, Y. Wei, A. Hood et al., “Ammonium sulfide passivation of Type-II InAs/GaSb superlattice photodiodes,” Applied Physics Letters, vol. 84, no. 12, pp. 2037–2039, 2004.
[164]  K. Banerjee, J. Huang, S. Ghosh et al., “Surface study of thioacetamide and zinc sulfide passivated long wavelength infrared type-II strained layer superlattice,” in Infrared Technology and Applications XXXVII, vol. 8012 of Proceedings of SPIE, April 2011.
[165]  E. Plis, J.-B. Rodriguez, S. J. Lee, and S. Krishna, “Electrochemical sulphur passivation of InAs/GaSb strain layer superlattice detectors,” Electronics Letters, vol. 42, no. 21, pp. 1248–1249, 2006.
[166]  R. Xu and C. G. Takoudis, “Chemical passivation of GaSb-based surfaces by atomic layer deposited ZnS using diethylzinc and hydrogen sulfide,” Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, vol. 30, no. 1, Article ID 01A145, 2012.
[167]  L. Zhang, L. X. Zhang, X. W. Shen et al., “Research on passivation of type II InAs/GaSb superlattice photodiodes,” in International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications, vol. 890731 of Proceedings of SPIE, 2013.
[168]  S. C. Lee, E. Plis, S. Krishna, and S. R. J. Brueck, “Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer,” Electronics Letters, vol. 45, no. 12, pp. 643–645, 2009.
[169]  M. Zamiri, E. Plis, J. O. Kim et al., “MWIR superlattice detectors integrated with back side illuminated plasmonic coupler,” Unpablished.
[170]  F. Szmulowicz and G. J. Brown, “GaSb for passivating type-II InAs/GaSb superlattice mesas,” Infrared Physics and Technology, vol. 53, no. 5, pp. 305–307, 2010.
[171]  E. Plis, B. Klein, S. Myers et al., “Type-II InAs/GaSb strained layer superlattices grown on GaSb (111)B substrate,” Journal of Vacuum Science and Technology B, vol. 31, no. 1, 2013.
[172]  F. Szmulowicz, H. J. Haugan, and G. J. Brown, “Proposal for (110) InAs/GaSb superlattices for infrared detection,” in Quantum Sensing and Nanophotonic Devices V, vol. 6900 of Proceedings of SPIE, January 2008.
[173]  C. Zhou, B. M. Nguyen, M. Razeghi, and M. Grayson, “Thermal conductivity of InAs/GaSb type-II superlattice,” Journal of Electronic Materials, vol. 41, pp. 2322–2325, 2012.
[174]  V. V. R. Kishore, B. Partoens, and F. M. Peeters, “Electronic structure of InAs/GaSb core-shell nanowires,” Physical Review B, vol. 86, Article ID 165439, 2012.
[175]  B. Ganjipour, M. Ek, B. M. Borg et al., “Carrier control and transport modulation in GaSb/InAsSb core/shell nanowires,” Applied Physics Letters, vol. 101, no. 10, Article ID 103501, 2012.
[176]  R. Li, Y. Lu, S. D. Chae et al., “InAs/AlGaSb heterojunction tunnel field-effect transistor with tunnelling in-line with the gate field,” Physica Status Solidi C, vol. 9, no. 2, pp. 389–392, 2012.
[177]  W. Pan, J. F. Klem, J. K. Kim, M. Thalakulam, M. J. Cich, and S. K. Lyo, “Chaotic quantum transport near the charge neutrality point in inverted type-II InAs/GaSb field-effect transistors,” Applied Physics Letters, vol. 102, no. 3, Article ID 033504, 2013.
[178]  H. Lotfi, R. T. Hinkey, L. Li, R. Q. Yang, J. F. Klem, and M. B. Johnson, “Narrow-bandgap photovoltaic devices operating at room temperature and above with high open-circuit voltage,” Applied Physics Letters, vol. 102, no. 21, Article ID 211103, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413