全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bioremediation of Waste Water Containing Hazardous Cadmium Ion with Ion Imprinted Interpenetrating Polymer Networks

DOI: 10.1155/2014/394841

Full-Text   Cite this paper   Add to My Lib

Abstract:

A novel Cd(II) ion imprinted interpenetrating polymer network (Cd(II)IIP) was prepared by free radical polymerization using alginic acid and NNMBA-crosslinked polyacrylamide in presence of initiator potassium persulphate. Cd(II)IIP showed higher capacity and selectivity than the nonimprinted polymer (NIP). The sorption capacities of Cd(II)IIP and NIP for Cd(II) ions were 0.886 and 0.663 , respectively. Kinetics studies showed that the sorption process closely agreed with a pseudosecond-order model. The thermodynamic data suggest that the sorption is a spontaneous endothermic process. Equilibrium experiments showed very good fit with the Langmuir isotherm equation for the monolayer sorption process. Cd(II)IIP exhibited good reusability, and the sorption capacity of Cd(II)IIP was stable within the first 4 cycles without obvious decrease. Also Cd(II)IIP showed almost 100% removal efficiency for Cd(II) ions in real environmental water samples, indicating that Cd(II)IIP could have wide application prospects in Cd(II) ion removal. 1. Introduction Water pollution is one of the most serious environmental problems of the present day. Water obtained from different sources is associated with a large number of impurities. Among them heavy metal toxicity is very crucial. Occurrence of toxic metals in lakes, ponds, ditch, and river water affect the lives of local people that depend on these water sources for their daily requirements [1]. Currently, anthropogenic inputs of metals exceed natural input. High levels of Cd, Cu, Pb, and Fe can act as ecological toxins in aquatic and terrestrial ecosystem [2, 3]. Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health. Cadmium and its compounds are highly toxic and exposure to this metal is known to cause cancer and targets the body’s cardiovascular, renal, gastrointestinal, neurological, reproductive, and respiratory systems. The approach of bioremediation is an innovative tool with greater potential to remove heavy metal ions in water bodies. The method of ion imprinting has become one of the fast-growing technologies that have achieved a lot of attention recently especially in the area of materials science. The IIPs are synthesized on the principle of enzyme phenomenon whereby a monomer is altered by a polymerization that takes place in the presence of a template that will be later removed to create cavities that will recognize only the analyte of interest. Also, the international agency for research on cancer has classified cadmium as a human carcinogen

References

[1]  L. D. Mafu, T. A. M. Msagati, and B. B. Mamba, “Ion-imprinted polymers for environmental monitoring of inorganic pollutants: synthesis, characterization, and applications,” Environmental Science and Pollution Research, vol. 20, no. 2, pp. 790–802, 2013.
[2]  F. Aboufazeli, H. Zhad, O. Sadeghi, M. Karimi, and E. Najafi, “Novel Cd(II) ion imprinted polymer coated on multiwall carbon nanotubes as a highly selective sorbent for cadmium determination in food samples,” Journal of AOAC International, vol. 97, no. 1, pp. 173–178, 2014.
[3]  J. H. Kim, S. B. Lee, S. J. Kim, and Y. M. Lee, “Rapid temperature/pH response of porous alginate-g-poly(N-isopropylacrylamide) hydrogels,” Polymer, vol. 43, no. 26, pp. 7549–7558, 2002.
[4]  H. G. Seiler, A. Sigel, and H. Sigel, Handbook on Toxicity of Inorganic Compounds, Marcel Dekker, New York, NY, USA, 1998.
[5]  Y. Zhai, Y. Liu, X. Chang, S. Chen, and X. Huang, “Selective solid-phase extraction of trace cadmium(II) with an ionic imprinted polymer prepared from a dual-ligand monomer,” Analytica Chimica Acta, vol. 593, no. 1, pp. 123–128, 2007.
[6]  K. Lu and X. P. Yan, “An imprinted organic-inorganic hybrid sorbent for selective separation of cadmium from aqueous solution,” Analytical Chemistry, vol. 76, no. 2, pp. 453–457, 2004.
[7]  J. Pan, S. Wang, and R. Zhang, “Ion-imprinted interpenetrating polymer networks for preconcentration and determination of Cd(II) by flame atomic absorption spectrometry,” Chemia Analityczna, vol. 51, no. 5, pp. 701–713, 2006.
[8]  S. E. Manahan, Environmental Chemistry, Lewis Publishers, Boca Raton, Fla, USA, 6th edition, 1994.
[9]  J. S. Watson, Separation Methods for Waste and Environmental Applications, Marcel Dekker, New York, NY, USA, 1999.
[10]  A. Martinsen, G. Skjak-Braek, and O. Smidsrod, “Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads,” Biotechnology and Bioengineering, vol. 33, no. 1, pp. 79–89, 1989.
[11]  D. Solpan and M. Torun, “Investigation of complex formation between (sodium alginate/acrylamide) semi-interpenetrating polymer networks and lead, cadmium, nickel ions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 268, no. 1–3, pp. 12–18, 2005.
[12]  T. Alizadeh, “An imprinted polymer for removal of Cd2+ from water samples: optimization of adsorption and recovery steps by experimental design,” Chinese Journal of Polymer Science, vol. 29, no. 6, pp. 658–669, 2011.
[13]  S. Ozkara, M. Andac, and V. Karakoc, “Ion-imprinted PHEMA based monolith for the removal of Fe3+ ions from aqueous solutions,” Journal of Applied Polymer Science, vol. 120, no. 3, pp. 1829–1836, 2011.
[14]  P. Fan and B. Wang, “Regulatory effects of Zn(II) on the recognition properties of metal coordination imprinted polymers,” Journal of Applied Polymer Science, vol. 116, no. 1, pp. 258–266, 2010.
[15]  N. Burham, A. Mamdouh, and M. F. EL-Sahat, “Separation and determination of Cd2+, Pb2+ and Cu2+ from water samples using chemically modified groundnut shells,” International Journal of Advanced Research, vol. 2, no. 1, pp. 755–765, 2014.
[16]  B. George, V. N. R. Pillai, and B. Mathew, “Effect of the nature of the crosslinking agent on the metal-ion complexation characteristics of 4?mol % DVB- and NNMBA-crosslinked polyacrylamide-supported glycines,” Journal of Applied Polymer Science, vol. 74, no. 14, pp. 3432–3444, 1999.
[17]  N. Sebastian, B. George, and B. Mathew, “Metal complexes of poly(acrylic acid): synthesis, characterization and thermogravimetric studies,” Polymer Degradation and Stability, vol. 60, no. 2-3, pp. 371–375, 1998.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413