全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hotspots Detection in Spatial Analysis via the Extended Gustafson-Kessel Algorithm

DOI: 10.1155/2013/876073

Full-Text   Cite this paper   Add to My Lib

Abstract:

We show a new approach for detecting hotspots in spatial analysis based on the extended Gustafson-Kessel clustering method encapsulated in a Geographic Information System (GIS) tool. This algorithm gives (in the bidimensional case) ellipses as cluster prototypes to be considered as hotspots on the geographic map and we study their spatiotemporal evolution. The data consist of georeferenced patterns corresponding to positions of Taliban’s attacks against civilians and soldiers in Afghanistan that happened during the period 2004–2010. We analyze the formation through time of new hotspots, the movement of the related centroids, the variation of the surface covered, the inclination angle, and the eccentricity of each hotspot. 1. Introduction Hotspot detection is a known spatial clustering process in which it is necessary to detect spatial areas on which specific events thicken [1]; the patterns are the events georeferenced as points on the map; the features are the geographical coordinates (latitude and longitude) of any event. Hotspot detection is used in many disciplines, as in crime analysis [2–4], for analyzing where crimes occur with a certain frequency, in fire analysis [5] for studying the phenomenon of forest fires, and in disease analysis [6–9] for studying the localization and the focuses of diseases. Generally speaking, for detecting more accurately the geometrical shapes of hotspot areas algorithms based on density [10, 11] are used and they measure the spatial distribution of patterns on the area of study, but these algorithms have a high computational complexity. In [5, 12, 13] a new hotspot detection method based on the extended fuzzy C-means algorithm (EFCM) [14, 15] was proposed, which is a variation of the famous fuzzy C-means (FCM) algorithm that detects cluster prototypes as hyperspheres. With respect to the FCM algorithm, the EFCM algorithm has the advantages of determining recursively the optimal number of clusters and being robust in the presence of noise and outliers. In [5, 12, 13] the EFCM is encapsulated in a GIS tool for detecting hotspots as circles displayed on the map. The pattern event dataset is partitioned according to the time of the event’s detection, so each subset is corresponding to a specific time interval. The authors compare the hotspots obtained in two consecutive years by studying their intersection on the map. In this way it is possible to follow the evolution of a particular phenomenon studying how its incidence is shifting and spreading through time. In this paper we present a new hotspot detection method based

References

[1]  T. H. Grubesic and A. T. Murray, “Detecting hotspots using cluster analysis and GIS,” Annual Conference of CMRC, Dallas, 2001, http://www.ojp.usdoj.gov/cmrc.
[2]  S. P. Chainey, S. Reid, and N. Stuart, “When is a hotspot a hotspot? A procedure for creating statistically robust hotspot geographic maps of crime,” in Innovations in GIS 9: Socioeconomic Applications of Geographic Information Science, D. Kidner, G. Higgs, and S. White, Eds., Taylor and Francis, London, UK, 2002.
[3]  K. Harries, Geographic Mapping Crime: Principle and Practice, National Institute of Justice, Washington, DC, USA, 1999.
[4]  A. T. Murray, I. McGuffog, J. S. Western, and P. Mullins, “Exploratory spatial data analysis techniques for examining urban crime,” British Journal of Criminology, vol. 41, no. 2, pp. 309–329, 2001.
[5]  F. Di Martino and S. Sessa, “The extended fuzzy C-means algorithm for hotspots in spatio-temporal GIS,” Expert Systems with Applications, vol. 38, no. 9, pp. 11829–11836, 2011.
[6]  M. R. Barillari, U. E. Barillari, F. Di Martino, R. Mele, I. Perfilieva, and S. Senatore, “Spatio-temporal hotspot analysis for exploring evolution of diseases: an application to oto-laryingo-pharingeal diseases,” Advances in Fuzzy Systems, vol. 2013, Article ID 385974, 7 pages, 2013.
[7]  R. M. Mullner, K. Chung, K. G. Croke, and E. K. Mensah, “Geographic information systems in public health and medicine,” Journal of Medical Systems, vol. 28, no. 3, pp. 215–221, 2004.
[8]  K. Polat, “Application of attribute weighting method based on clustering centers to discrimination of linearly non-separable medical datasets,” Journal of Medical Systems, vol. 36, no. 4, pp. 2657–2673, 2012.
[9]  C.-K. Wei, S. Su, and M.-C. Yang, “Application of data mining on the development of a disease distribution map of screened community residents of taipei county in Taiwan,” Journal of Medical Systems, vol. 36, no. 3, pp. 2021–2027, 2012.
[10]  I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 773–780, 1989.
[11]  R. Krishnapuram and J. Kim, “Clustering algorithms based on volume criteria,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 2, pp. 228–236, 2000.
[12]  F. Di Martino, V. Loia, and S. Sessa, “Extended fuzzy c-means clustering algo-rithm for hotspot events in spatial analysis,” International Journal of Hybrid Intelligent Systems, vol. 4, pp. 1–14, 2007.
[13]  F. Di Martino and S. Sessa, “Implementation of the extended fuzzy C-means algorithm in geographic information systems,” Journal of Uncertain Systems, vol. 3, no. 4, pp. 298–306, 2009.
[14]  U. Kaymak, R. Babuska, M. Setnes, H. B. Verbruggen, and H. M. van Nauta Lemke, “Methods for simplification of fuzzy models,” in Intelligent Hybrid Systems, D. Ruan, Ed., pp. 91–108, Kluwer Academic, Dordrecht, The Netherlands, 1997.
[15]  U. Kaymak and M. Setnes, “Fuzzy clustering with volume prototypes and adaptive cluster merging,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 6, pp. 705–712, 2002.
[16]  D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy covariance matrix,” in Procedings of the 17th IEEE Conf Decis Control Incl Symp Adapt Processes, pp. 761–766, San Diego, Calif, USA, January 1979.
[17]  R. Gnanadesikan and J. R. Kettenring, “Robust estimates, residuals, and outlier detection with multiresponse data,” Biometrics, vol. 28, pp. 81–124, 1972.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133