全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Plasma and Red Cell Reference Intervals of 5-Methyltetrahydrofolate of Healthy Adults in Whom Biochemical Functional Deficiencies of Folate and Vitamin B12 Had Been Excluded

DOI: 10.1155/2014/465623

Full-Text   Cite this paper   Add to My Lib

Abstract:

5-Methyltetrahydrofolate (5-MTHF) is the predominant form of folate and a strong determinant of homocysteine concentrations. There is evidence that suboptimal 5-MTHF availability is a risk factor for cardiovascular disease independent of homocysteine. The analysis of folates remains challenging and is almost exclusively limited to the reporting of “total” folate rather than individual molecular forms. The purpose of this study was to establish the reference intervals of 5-MTHF in plasma and red cells of healthy adults who had been prescreened to exclude biochemical evidence of functional deficiency of folate and/or vitamin B12. Functional folate and vitamin B12 status was assessed by respective plasma measurements of homocysteine and methylmalonic acid in 144 healthy volunteers, aged 19–64 years. After the exclusion of 10 individuals, values for 134 subjects were used to establish the upper reference limits for homocysteine (13?μmol/L females and 15?μmol/L males) and methylmalonic acid (430?nmol/L). Subjects with values below these cutoffs were designated as folate and vitamin B12 replete and their plasma and red cell 5-MTHF reference intervals determined, : 6.6–39.9?nmol/L and 223–1041?nmol/L, respectively. The application of these intervals will assist in the evaluation of folate status and facilitate studies to evaluate the relationship of 5-MTHF to disease. 1. Introduction 5-MTHF, the predominant form of folate (vitamin B9) in plasma and red cells, is a substrate for the methionine synthase and vitamin B12 (methylcobalamin form—methyl-Cbl) mediated conversion of homocysteine (tHcy) to methionine (Figure 1). Suboptimal 5-MTHF availability leads to an increase in circulating homocysteine (hyperhomocysteinaemia) which has been associated with many diseases and health complications including cardiovascular disease [1, 2]. There is also evidence to suggest that 5-MTHF deficiency may be a cardiovascular risk factor independent of homocysteine [3, 4]. Figure 1: Homocysteine, folate, and vitamin B 12 metabolism. THF (tetrahydrofolate), 5-MTHF (5-methyltetrahydrofolate), MTHFR (methylene tetrahydrofolate reductase), MS (methionine synthase), CBS (cystathionine beta-synthase), SAM ( S-adenosyl methionine), Cbl (cobalamin), TC II (transcobalamin), holo TC (holotrascobalamin), OH-Cbl (hydroxocobalamin), MMA-CoA (methylmalonyl-CoA), and MMA (methylmalonic acid). In the plasma of healthy humans, 5-MTHF typically constitutes 80–90% of total folate [5, 6]. Circulatory concentrations of 5-MTHF are partly dependant on methylenetetrahydrofolate reductase (MTHFR)

References

[1]  H. McNulty, K. Pentieva, L. Hoey, and M. Ward, “Homocysteine, B-vitamins and CVD,” Proceedings of the Nutrition Society, vol. 67, no. 2, pp. 232–237, 2008.
[2]  K. S. McCully, “Homocysteine, vitamins, and vascular disease prevention,” The American Journal of Clinical Nutrition, vol. 86, no. 5, pp. 1563S–1568S, 2007.
[3]  C. Antoniades, C. Shirodaria, N. Warrick et al., “5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling,” Circulation, vol. 114, no. 11, pp. 1193–1201, 2006.
[4]  I. Quéré, T. V. Perneger, J. Zittoun et al., “Red blood cell methylfolate and plasma homocysteine as risk factors for venous thromboembolism: a matched case-control study,” The Lancet, vol. 359, no. 9308, pp. 747–752, 2002.
[5]  R. J. Leeming, A. Pollock, L. J. Melville, and C. G. B. Hamon, “Measurement of 5-methyltetrahydrofolic acid in man by high-performance liquid chromatography,” Metabolism, vol. 39, no. 9, pp. 902–904, 1990.
[6]  C. M. Pfeiffer, Z. Fazili, L. McCoy, M. Zhang, and E. W. Gunter, “Determination of folate vitamers in human serum by stable-isotope-dilution tandem mass spectrometry and comparison with radioassay and microbiologic assay,” Clinical Chemistry, vol. 50, no. 2, pp. 423–432, 2004.
[7]  Z. Fazili and C. M. Pfeiffer, “Measurement of folates in serum and conventionally prepared whole blood lysates: application of an automated 96-well plate isotope-dilution tandem mass spectrometry method,” Clinical Chemistry, vol. 50, no. 12, pp. 2378–2381, 2004.
[8]  Y. M. Smulders, D. E. C. Smith, R. M. Kok et al., “Red blood cell folate vitamer distribution in healthy subjects is determined by the methylenetetrahydrofolate reductase C677T polymorphism and by the total folate status,” The Journal of Nutritional Biochemistry, vol. 18, no. 10, pp. 693–699, 2007.
[9]  F. M. T. Loehrer, C. P. Angst, W. E. Haefeli, P. P. Jordan, R. Ritz, and B. Fowler, “Low whole-blood S-adenosylmethionine and correlation between 5-methyltetrahydrofolate and homocysteine in coronary artery disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 6, pp. 727–733, 1996.
[10]  M. Lucock and Z. Yates, “Measurement of red blood cell methylfolate,” The Lancet, vol. 360, no. 9338, pp. 1021–1022, 2002.
[11]  Food and Nutrition Board IoM, Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin and Choline, National Academy Press, Washington, DC, USA, 1998.
[12]  UK NEQAS Haematinics, “Report on reference range data collected from haematinics scheme participants in July 2007,” Tech. Rep., Good Hope Hospital, Haematology Department, Heart of England Foundation Trust, 2008.
[13]  G. H?lleland, J. Schneede, P. M. Ueland, P. K. Lund, H. Refsum, and S. Sandberg, “Cobalamin deficiency in general practice. Assessment of the diagnostic utility and cost-benefit analysis of methylmalonic acid determination in relation to current diagnostic strategies,” Clinical Chemistry, vol. 45, no. 2, pp. 189–198, 1999.
[14]  P. J. Babidge and W. J. Babidge, “Determination of methylmalonic acid by high-performance liquid chromatography,” Analytical Biochemistry, vol. 216, no. 2, pp. 424–426, 1994.
[15]  A. Sobczynska-Malefora, D. J. Harrington, M. C. E. Lomer et al., “Erythrocyte folate and 5-methyltetrahydrofolate levels decline during 6 months of oral anticoagulation with warfarin,” Blood Coagulation and Fibrinolysis, vol. 20, no. 4, pp. 297–302, 2009.
[16]  J. Chladek, L. Sispera, and J. Martinkova, “High-performance liquid chromatographic assay for the determination of 5-methyltetrahydrofolate in human plasma,” Journal of Chromatography B, vol. 744, pp. 307–313, 2000.
[17]  H. Ihara, T. Watanabe, N. Hashizume et al., “Commutability of National Institute of Standards and Technology standard reference material 1955 homocysteine and folate in frozen human serum for total folate with automated assays,” Annals of Clinical Biochemistry, vol. 47, no. 6, pp. 541–548, 2010.
[18]  A. V. Hoffbrand, F. A. Newcombe, and D. L. Mollin, “Method of assay of red cell folate activity and the value of the assay as a test for folate deficiency,” Journal of Clinical Pathology, vol. 19, no. 1, pp. 17–28, 1966.
[19]  CLSI, Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory, Approved Guideline, CLSI document C28-A3, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 3rd edition, 2008.
[20]  J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, Reading, Mass, USA, 1977.
[21]  E. K. Harris and J. C. Boyd, “On dividing reference data into subgroups to produce separate reference ranges,” Clinical Chemistry, vol. 36, no. 2, pp. 265–270, 1990.
[22]  H. E. Solberg, “International Federation of Clinical Chemistry (IFCC). Scientific Committee, Clinical Section. Expert Panel on Theory of Reference Values, and International Committee for Standardization in Haematology (ICSH). Standing Committee on Reference Values. Approved Recommendation (1986) on the theory of reference values. Part 1. The concept of reference values,” Journal of Clinical Chemistry and Clinical Biochemistry, vol. 25, no. 5, pp. 337–342, 1987.
[23]  E. H. Reynolds, R. J. Wrighton, A. L. Johnson, J. Preece, and I. Chanarin, “Inter-relations of folic acid and vitamin B12 in drug-treated epileptic patients,” Epilepsia, vol. 12, no. 2, pp. 165–171, 1971.
[24]  W.-Y. Au, S.-K. Tsang, B. K. L. Cheung, T.-S. Siu, E. S. K. Ma, and S. Tam, “Cough mixture abuse as a novel cause of folate deficiency: a prospective, community-based, controlled study,” Haematologica, vol. 92, no. 4, pp. 562–563, 2007.
[25]  U. Sener, Y. Zorlu, O. Karaguzel, O. Ozdamar, I. Coker, and M. Topbas, “Effects of common anti-epileptic drug monotherapy on serum levels of homocysteine, vitamin B12, folic acid and vitamin B6,” Seizure, vol. 15, no. 2, pp. 79–85, 2006.
[26]  N. Philpott, B. P. Kelleher, O. P. Smith, and S. D. O'Broin, “High serum folates and the simplification of red cell folate analysis,” Clinical and Laboratory Haematology, vol. 23, no. 1, pp. 15–20, 2001.
[27]  H. Refsum, A. D. Smith, P. M. Ueland et al., “Facts and recommendations about total homocysteine determinations: an expert opinion,” Clinical Chemistry, vol. 50, no. 1, pp. 3–32, 2004.
[28]  O. Nyg?rd, H. Refsum, P. M. Ueland, and S. E. Vollset, “Major lifestyle determinants of plasma total homocysteine distribution: the hordaland homocysteine study,” The American Journal of Clinical Nutrition, vol. 67, no. 2, pp. 263–270, 1998.
[29]  P. F. Jacques, I. H. Rosenberg, G. Rogers et al., “Serum total homocysteine concentrations in adolescent and adult Americans: results from the third National Health and Nutrition Examination Survey,” The American Journal of Clinical Nutrition, vol. 69, no. 3, pp. 482–489, 1999.
[30]  E. Nexo and E. Hoffmann-Lücke, “Holotranscobalamin, a marker of vitamin B-12 status: analytical aspects and clinical utility,” The American Journal of Clinical Nutrition, vol. 94, no. 1, pp. 359S–365S, 2011.
[31]  K. Rasmussen, J. Moller, M. Lyngbak, A. M. Pedersen, and L. Dybkjaer, “Age- and gender-specific reference intervals for total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation,” Clinical Chemistry, vol. 42, pp. 630–636, 1996.
[32]  A. Goringe, R. Ellis, I. McDowell et al., “The limited value of methylmalonic acid, homocysteine and holotranscobalamin in the diagnosis of early B12 deficiency,” Haematologica, vol. 91, no. 2, pp. 231–234, 2006.
[33]  Z. Fazili, C. M. Pfeiffer, and M. Zhang, “Comparison of serum folate species analyzed by LC-MS/MS with total folate measured by microbiologic assay and Bio-Rad radioassay,” Clinical Chemistry, vol. 53, no. 4, pp. 781–784, 2007.
[34]  J. D. Wright, K. Bialostosky, E. W. Gunter et al., “Blood folate and vitamin B12: United States, 1988–94,” Vital and Health Statistics, no. 243, pp. 1–78, 1998.
[35]  J. Selhub, P. F. Jacques, G. Dallal, S. Choumenkovitch, and G. Rogers, “The use of blood concentrations of vitamins and their respective functional indicators to define folate and vitamin B12 status,” Food and Nutrition Bulletin, vol. 29, no. 2, pp. S67–S73, 2008.
[36]  T. Opladen, V. T. Ramaekers, G. Heimann, and N. Blau, “Analysis of 5-methyltetrahydrofolate in serum of healthy children,” Molecular Genetics and Metabolism, vol. 87, no. 1, pp. 61–65, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413