全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Acquired Myelodysplasia or Myelodysplastic Syndrome: Clearing the Fog

DOI: 10.1155/2013/309637

Full-Text   Cite this paper   Add to My Lib

Abstract:

Myelodysplastic syndromes (MDS) are clonal myeloid disorders characterized by progressive peripheral blood cytopenias associated with ineffective myelopoiesis. They are typically considered neoplasms because of frequent genetic aberrations and patient-limited survival with progression to acute myeloid leukemia (AML) or death related to the consequences of bone marrow failure including infection, hemorrhage, and iron overload. A progression to AML has always been recognized among the myeloproliferative disorders (MPD) but occurs only rarely among those with essential thrombocythemia (ET). Yet, the World Health Organization (WHO) has chosen to apply the designation myeloproliferative neoplasms (MPN), for all MPD but has not similarly recommended that all MDS become the myelodysplastic neoplasms (MDN). This apparent dichotomy may reflect the extremely diverse nature of MDS. Moreover, the term MDS is occasionally inappropriately applied to hematologic disorders associated with acquired morphologic myelodysplastic features which may rather represent potentially reversible hematological responses to immune-mediated factors, nutritional deficiency states, and disordered myelopoietic responses to various pharmaceutical, herbal, or other potentially myelotoxic compounds. We emphasize the clinical settings, and the histopathologic features, of such AMD that should trigger a search for a reversible underlying condition that may be nonneoplastic and not MDS. 1. Introduction Despite advances in cytogenetic and flow cytometric analyses, aberrant cellular morphology, as identified in the peripheral blood and bone marrow, remains the defining feature leading to a clinical diagnosis of myelodysplastic syndrome (MDS). Certain laboratory values such as blood cell count and cell volume measurements are accurate and reproducible, and the results are not open to dispute, as is the presence of particular unique and obvious morphologic findings such as the presence of acquired Pelger-Hu?t granulocytes and tear-drop erythrocytes in the peripheral blood or large numbers of ringed sideroblasts or increased numbers of myeloblasts in the bone marrow. Other observations such as reduced mature myeloid cell cytoplasmic granulation and the presence of dimorphic erythrocyte or dysmorphic megakaryocytic populations are more subtle. However, what constitutes a significant variation from normal in each of the three major cell lines in the bone marrow remains very observer dependent. Unfortunately, we are only occasionally but usefully reminded that not all clear-cut examples of acquired

References

[1]  A. A. N. Giagounidis, “Myelodysplasia or myelodysplastic syndrome?” Leukemia Research, vol. 33, no. 8, p. 1019, 2009.
[2]  M. A. Lichtman, “Myelodysplasia or myeloneoplasia: thoughts on the nosology of clonal myeloid diseases,” Blood Cells, Molecules, and Diseases, vol. 26, no. 6, pp. 572–581, 2000.
[3]  U. Germing, N. Gattermann, M. Aivado, B. Hildebrandt, and C. Aul, “Two types of acquired idiopathic sideroblastic anaemia (AISA): a time-tested distinction,” The British Journal of Haematology, vol. 108, no. 4, pp. 724–728, 2000.
[4]  R. Garand, J. Gardais, T. M. Bizet et al., “Heterogeneity of acquired idiopathic sideroblastic anaemia (AISA),” Leukemia Research, vol. 16, no. 5, pp. 463–468, 1992.
[5]  L. Malcovati, U. Germing, A. Kuendgen et al., “Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes,” Journal of Clinical Oncology, vol. 25, no. 23, pp. 3503–3510, 2007.
[6]  R. D. Irons, S. A. Gross, A. Le et al., “Integrating WHO 2001–2008 criteria for the diagnosis of Myelodysplastic syndrome (MDS): a case-case analysis of benzene exposure,” Chemico-Biological Interactions, vol. 184, no. 1-2, pp. 30–38, 2010.
[7]  E. A. Natelson, “Benzene exposure and refractory sideroblastic erythropoiesis: is there an association?” The American Journal of the Medical Sciences, vol. 334, no. 5, pp. 356–360, 2007.
[8]  U. Germing and A. Kundgen, “Prognostic scoring systems in MDS,” Leukemia Research, vol. 36, no. 12, pp. 1463–1469, 2012.
[9]  S. Parmentier, J. Schetelig, K. Lorenz et al., “Assessment of dysplastic hematopoiesis: lessons from healthy bone marrow donors,” Haematologica, vol. 97, no. 5, pp. 723–730, 2012.
[10]  J. W. Vardiman, “Hematopathological concepts and controversies in the diagnosis and classification of myelodysplastic syndromes,” ASH Education Book, no. 1, pp. 199–204, 2006.
[11]  H. L. Fred, Elephant Medicine and More: Musings of a Medical Educator, Mercer University Press, Macon, Ga, USA, 1989.
[12]  K. L. Chang, M. R. O'Donnell, M. L. Slovak et al., “Primary myelodysplasia occurring in adults under 50 years old: a clinicopathologic study of 52 patients,” Leukemia, vol. 16, no. 4, pp. 623–631, 2002.
[13]  M. Breccia, A. Mengarelli, M. Mancini et al., “Myelodysplastic syndromes in patients under 50 years old: a single institution experience,” Leukemia Research, vol. 29, no. 7, pp. 749–754, 2005.
[14]  A. Kuendgen, C. Strupp, M. Aivado et al., “Myelodysplastic syndromes in patients younger than age 50,” Journal of Clinical Oncology, vol. 24, no. 34, pp. 5358–5365, 2006.
[15]  J. Irwin, A. D'Souza, L. Johnson, and J. Carter, “Myelodysplasia in the Wellington region 2002–2007: disease incidence and treatment patterns,” Internal Medicine Journal, vol. 41, no. 5, pp. 399–407, 2011.
[16]  D. E. Rollison, N. Howlader, M. T. Smith et al., “Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs,” Blood, vol. 112, no. 1, pp. 45–52, 2008.
[17]  U. Germing, C. Aul, C. M. Niemeyer, R. Haas, and J. M. Bennett, “Epidemiology, classification and prognosis of adults and children with myelodysplastic syndromes,” Annals of Hematology, vol. 87, no. 9, pp. 691–699, 2008.
[18]  E. A. Natelson and H. L. Fred, “Lead poisoning from cocktail glasses. Observation on 2 patients,” The Journal of the American Medical Association, vol. 236, no. 22, p. 2527, 1976.
[19]  W. N. Rezuke, C. Anderson, W. T. Pastuszak, S. R. Conway, and S. I. Firshein, “Arsenic intoxication presenting as a myelodysplastic syndrome: a case report,” The American Journal of Hematology, vol. 36, no. 4, pp. 291–293, 1991.
[20]  H. Gill, W. W. Choi, and Y. L. Kwong, “Refractory anemia with ringed sideroblasts: more than meets the eye,” Journal of Clinical Oncology, vol. 28, no. 32, pp. e654–e655, 2010.
[21]  E. Koca, Y. Buyukasik, D. Cetiner et al., “Copper deficiency with increased hematogones mimicking refractory anemia with excess blasts,” Leukemia Research, vol. 32, no. 3, pp. 495–499, 2008.
[22]  J. D. Huff, Y. Keung, M. Thakuri et al., “Copper deficiency causes reversible myelodysplasia,” The American Journal of Hematology, vol. 82, no. 7, pp. 625–630, 2007.
[23]  A. L. Summerfield, F. U. Steinberg, and J. G. Gonzalez, “Morphologic findings in bone marrow precursor cells in zinc-induced copper deficiency anemia,” The American Journal of Clinical Pathology, vol. 97, no. 5, pp. 665–668, 1992.
[24]  N. Saini, J. O. Jacobson, S. Jha, V. Saini, and R. Weinger, “The perils of not digging deep enough-uncovering a rare cause of acquired anemia,” The American Journal of Hematology, vol. 87, no. 4, pp. 413–416, 2012.
[25]  R. J. Piso, K. Kriz, and M. Desax, “Severe isoniazid related sideroblastic anemia,” Hematology Reviews, vol. 3, no. 1, article e2, 2011.
[26]  R. Colella and S. C. Hollensead, “Understanding and recognizing the Pelger-Hu?t anomaly,” The American Journal of Clinical Pathology, vol. 137, no. 3, pp. 358–366, 2012.
[27]  J. M. Cunningham, M. M. Patnaik, D. E. Hammerschmidt, and G. M. Vercellotti, “Historical perspective and clinical implications of the Pelger-Hu?t cell,” The American Journal of Hematology, vol. 84, no. 2, pp. 116–119, 2009.
[28]  J. E. Etzell and E. Wang, “Acquired Pelger-Hu?t anomaly in association with concomitant tacrolimus and mycophenolate mofetil in a liver transplant patient: a case report and review of the literature,” Archives of Pathology and Laboratory Medicine, vol. 130, no. 1, pp. 93–96, 2006.
[29]  E. Wang, E. Boswell, I. Siddiqi et al., “Pseudo-Pelger-Hu?t anomaly induced by medications: a clinicopathologic study in comparison with myelodysplastic syndrome-related pseudo-Pelger-Hu?t anomaly,” The American Journal of Clinical Pathology, vol. 135, no. 2, pp. 291–303, 2011.
[30]  D. Liu, Z. Chen, Y. Xue et al., “The significance of bone marrow cell morphology and its correlation with cytogenetic features in the diagnosis of MDS-RA patients,” Leukemia Research, vol. 33, no. 8, pp. 1029–1038, 2009.
[31]  L. Lv, G. Lin, X. Gao et al., “Case-control study of risk factors of myelodysplastic syndromes according to World Health Organization classification in a Chinese population,” The American Journal of Hematology, vol. 86, no. 2, pp. 163–169, 2011.
[32]  S. Y. Kristinsson, M. Bj?rkholm, M. Hultcrantz, A. R. Derolf, O. Landgren, and L. R. Goldin, “Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes,” Journal of Clinical Oncology, vol. 29, no. 21, pp. 2897–2903, 2011.
[33]  J. Zervas, C. G. Geary, and S. Oleesky, “Sideroblastic anemia treated with immunosuppressive therapy,” Blood, vol. 44, no. 1, pp. 117–123, 1974.
[34]  P. Fenaux and L. Ades, “How we treat lower-risk myelodysplastic syndromes,” Blood, vol. 121, no. 21, pp. 4280–4286, 2013.
[35]  J. Vardiman, “The classification of MDS: from FAB to WHO and beyond,” Leukemia Research, vol. 36, no. 12, pp. 1453–1458, 2012.
[36]  M. Cazzola, M. G. Della Porta, E. Travaglino, and L. Malcovati, “Classification and prognostic evaluation of Myelodysplastic syndromes,” Seminars in Oncology, vol. 38, no. 5, pp. 627–634, 2011.
[37]  M. Voulgarelis, S. Giannouli, K. Ritis, and A. G. Tzioufas, “Myelodysplasia-associated autoimmunity: clinical and pathophysiologic concepts,” European Journal of Clinical Investigation, vol. 34, no. 10, pp. 690–700, 2004.
[38]  D. Farmakis, E. Polymeropoulos, A. Polonifi et al., “Myelodysplastic syndrome associated with multiple autoimmune disorders,” Clinical Rheumatology, vol. 24, no. 4, pp. 428–430, 2005.
[39]  S. M. Ramadan, T. M. Fouad, V. Summa, S. Hasan, and F. Lo-Coco, “Acute myeloid leukemia developing in patients with autoimmune diseases,” Haematologica, vol. 97, no. 6, pp. 805–817, 2012.
[40]  M. J. Olnes and E. M. Sloand, “Targeting immune dysregulation in myelodysplastic syndromes,” The Journal of the American Medical Association, vol. 305, no. 8, pp. 814–819, 2011.
[41]  M. Vignon-Pennamen, C. Juillard, M. Rybojad et al., “Chronic recurrent lymphocytic sweet syndrome as a predictive marker of myelodysplasia: a report of 9 cases,” Archives of Dermatology, vol. 142, no. 9, pp. 1170–1176, 2006.
[42]  P. R. Cohen, “Sweet's syndrome—a comprehensive review of an acute febrile neutrophilic dermatosis,” Orphanet Journal of Rare Diseases, vol. 2, no. 1, article 34, 2007.
[43]  H. Enright and W. Miller, “Autoimmune phenomena in patients with myelodysplastic syndromes,” Leukemia and Lymphoma, vol. 24, no. 5-6, pp. 483–489, 1997.
[44]  A. G. Tristano, “Acquired amegakaryocytic thrombocytopenic purpura: review of a not very well-defined disorder,” European Journal of Internal Medicine, vol. 16, no. 7, pp. 477–481, 2005.
[45]  J. Latvala, S. Parkkila, and O. Niemel?, “Excess alcohol consumption is common in patients with cytopenia: studies in blood and bone marrow cells,” Alcoholism: Clinical and Experimental Research, vol. 28, no. 4, pp. 619–624, 2004.
[46]  E. A. Natelson, “Pregnancy-induced pancytopenia with cellular bone marrow: distinctive hematologic features,” The American Journal of the Medical Sciences, vol. 332, no. 4, pp. 205–207, 2006.
[47]  Y. Li, P. Lin, Y. Ge, and G. Garcia-Manero, “Myelodysplastic syndromes should been renamed as myelodysplastic neoplasms,” Leukemia Research, vol. 37, no. 4, pp. 463–464, 2013.
[48]  N. Tanaka, J. S. Kim, J. D. Newell et al., “Rheumatoid arthritis-related lung diseases: CT findings,” Radiology, vol. 232, no. 1, pp. 81–91, 2004.
[49]  R. D. Irons, L. Lv, S. A. Gross et al., “Chronic exposure to benzene results in a unique form of dysplasia,” Leukemia Research, vol. 29, no. 12, pp. 1371–1380, 2005.
[50]  L. Lv, P. Kerzic, G. Lin et al., “The TNF-α 238A polymorphism is associated with susceptibility to persistent bone marrow dysplasia following chronic exposure to benzene,” Leukemia Research, vol. 31, no. 11, pp. 1479–1485, 2007.
[51]  M. A. Ruiz, L. G. S. Augusto, J. Vassallo, A. C. Vigorito, I. Lorand-Metze, and C. A. Souza, “Bone marrow morphology in patients with neutropenia due to chronic exposure to organic solvents (benzene): early lesions,” Pathology Research and Practice, vol. 190, no. 2, pp. 151–154, 1994.
[52]  M. Aksoy, “Different types of malignancies due to occupational exposure to benzene: a review of recent observations in Turkey,” Environmental Research, vol. 23, no. 1, pp. 181–190, 1980.
[53]  Z. N. Singh, D. Huo, J. Anastasi et al., “Therapy-related myelodysplastic syndrome: morphologic subclassification may not be clinically relevant,” The American Journal of Clinical Pathology, vol. 127, no. 2, pp. 197–205, 2007.
[54]  Y. Song, X. Du, F. Hao et al., “Immunosuppressive therapy of cyclosporin A for severe benzene-induced haematopoietic disorders and a 6-month follow-up,” Chemico-Biological Interactions, vol. 186, no. 1, pp. 96–102, 2010.
[55]  L. Li, X. Liu, L. Nie et al., “Unique cytogenetic features of primary myelodysplastic syndromes in Chinese patients,” Leukemia Research, vol. 33, no. 9, pp. 1194–1198, 2009.
[56]  Y. Cheng, Y. Wang, H. Wang et al., “Cytogenetic profile of de novo acute myeloid leukemia: a study based on 1432 patients in a single institution of China,” Leukemia, vol. 23, no. 10, pp. 1801–1806, 2009.
[57]  D. Gómez-Almaguer, M. Solano-Genesta, L. Tarín-Arzaga et al., “Low-dose rituximab and alemtuzumab combination therapy for patients with steroid-refractory autoimmune cytopenias,” Blood, vol. 116, no. 23, pp. 4783–4785, 2010.
[58]  E. A. Natelson, “Myelodysplasia with isolated trisomy 15: a 15-year follow-up without specific therapy,” The American Journal of the Medical Sciences, vol. 331, no. 3, pp. 157–158, 2006.
[59]  E. M. Sloand, “Hypocellular myelodysplasia,” Hematology/Oncology Clinics of North America, vol. 23, no. 2, pp. 347–360, 2009.
[60]  P. K. Epling-Burnette, J. McDaniel, S. Wei, and A. F. List, “Emerging immunosuppressive drugs in myelodysplastic syndromes,” Expert Opinion on Emerging Drugs, vol. 17, no. 4, pp. 519–541, 2012.
[61]  A. A. van de Loosdrecht and T. M. Westers, “Cutting edge: flow cytometry in myelodysplastic syndromes,” Journal of the National Comprehensive Cancer Network, vol. 11, no. 7, pp. 892–902, 2013.
[62]  R. Bejar, R. V. Tiu, M. Sekeres, and R. S. Komrokji, “Myelodysplastic syndromes: recent advancements in risk stratification and unmet therapeutic challenges,” The American Society of Clinical Oncology Educational Book, no. 1, pp. 256–270, 2013.
[63]  A. Maassen, C. Strupp, A. Giagounidis et al., “Validation and proposals for a refinement of the WHO, 2008 classification of myelodysplastic syndromes without excess of blasts,” Leukemia Research, vol. 37, no. 1, pp. 64–70, 2013.
[64]  R. Invernizzi, A. Pecci, L. Bellotti, and E. Ascari, “Expression of p53, Bcl-2 and ras oncoproteins and apoptosis levels in acute leukaemias and myelodysplastic syndromes,” Leukemia and Lymphoma, vol. 42, no. 3, pp. 481–489, 2001.
[65]  M. Kitagawa, S. Yamaguchi, M. Takahashi, T. Tanizawa, K. Hirokawa, and R. Kamiyama, “Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia,” Leukemia, vol. 12, no. 4, pp. 486–492, 1998.
[66]  A. Orazi, M. Kahsai, K. John, and R. S. Neiman, “p53 Overexpression in myeloid leukemic disorders is associated with increased apoptosis of hematopoietic marrow cells and ineffective hematopoiesis,” Modern Pathology, vol. 9, no. 1, pp. 48–52, 1996.
[67]  A. Parcharidou, A. Raza, T. Economopoulos et al., “Extensive apoptosis of bone marrow cells as evaluated by the in situ end-labelling (ISEL) technique may be the basis for ineffective haematopoiesis in patients with myelodysplastic syndromes,” European Journal of Haematology, vol. 62, no. 1, pp. 19–26, 1999.
[68]  S. D. Mundle, S. Reza, A. Ali et al., “Correlation of tumor necrosis factor α (TNFα) with high caspase 3-like activity in myelodysplastic syndromes,” Cancer Letters, vol. 140, no. 1-2, pp. 201–207, 1999.
[69]  J. E. Parker, G. J. Mufti, F. Rasool, A. Mijovic, S. Devereux, and A. Pagliuca, “The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS,” Blood, vol. 96, no. 12, pp. 3932–3938, 2000.
[70]  S. D. Mundle, A. Ali, J. D. Cartlidge et al., “Evidence for involvement of tumor necrosis factor-α in apoptotic death of bone marrow cells in myelodysplastic syndromes,” The American Journal of Hematology, vol. 60, no. 1, pp. 36–47, 1999.
[71]  S. D. Mundle, V. T. Shetty, and A. Raza, “Is excessive spontaneous intramedullary apoptosis unique to myelodysplasia?” Experimental Hematology, vol. 26, no. 11, pp. 1014–1017, 1998.
[72]  A. Raza, S. Gezer, S. Mundle et al., “Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes,” Blood, vol. 86, no. 1, pp. 268–276, 1995.
[73]  A. Raza, S. Mundle, A. Iftikhar et al., “Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis,” The American Journal of Hematology, vol. 48, no. 3, pp. 143–154, 1995.
[74]  V. Shetty, S. Mundle, S. Alvi et al., “Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes,” Leukemia Research, vol. 20, no. 11-12, pp. 891–900, 1996.
[75]  S. Aggarwal, A. A. van de Loosdrecht, C. Alhan, G. J. Ossenkoppele, T. M. Westers, and H. J. Bontkes, “Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy,” The British Journal of Haematology, vol. 153, no. 5, pp. 568–581, 2011.
[76]  D. Bouscary, J. de Vos, M. Guesnu et al., “Fas/Apo-1(CD95) expression and apoptosis in patients with myelodysplastic syndromes,” Leukemia, vol. 11, no. 6, pp. 839–845, 1997.
[77]  M. E. D. Chamuleau, T. M. Westers, L. van Dreunen et al., “Immune mediated autologous cytotoxicity against hematopoietic precursor cells in patients with myelodysplastic syndrome,” Haematologica, vol. 94, no. 4, pp. 496–506, 2009.
[78]  P. K. Epling-Burnette, F. Bai, J. S. Painter et al., “Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors,” Blood, vol. 109, no. 11, pp. 4816–4824, 2007.
[79]  M. Kitagawa, R. Kamiyama, and T. Kasuga, “Increase in number of bone marrow macrophages in patients with myelodysplastic syndromes,” European Journal of Haematology, vol. 51, no. 1, pp. 56–58, 1993.
[80]  J. Wu and L. L. Lanier, “Natural killer cells and cancer,” Advances in Cancer Research, vol. 90, pp. 127–156, 2003.
[81]  M. Wetzler, R. Kurzrock, Z. Estrov, E. Estey, and M. Talpaz, “Cytokine expression in adherent layers from patients with myelodysplastic syndrome and acute myelogenous leukemia,” Leukemia Research, vol. 19, no. 1, pp. 23–34, 1995.
[82]  P. R. Crocker, S. Freeman, S. Gordon, and S. Kelm, “Sialoadhesin binds preferentially to cells of the granulocytic lineage,” Journal of Clinical Investigation, vol. 95, no. 2, pp. 635–643, 1995.
[83]  E. M. Sloand and K. Rezvani, “The role of the immune system in myelodysplasia: implications for therapy,” Seminars in Hematology, vol. 45, no. 1, pp. 39–48, 2008.
[84]  P. A. Miescher, H. Favre, and P. Beris, “Autoimmune myelodysplasias,” Seminars in Hematology, vol. 28, no. 4, pp. 322–330, 1991.
[85]  M. J. Smyth, G. P. Dunn, and R. D. Schreiber, “Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity,” Advances in Immunology, vol. 90, no. 1, pp. 1–50, 2006.
[86]  L. B. Travis, C. Y. Li, Z. N. Zhang et al., “Hematopoietic malignancies and related disorders among benzene-exposed workers in China,” Leukemia and Lymphoma, vol. 14, no. 1-2, pp. 91–102, 1994.
[87]  L. Lv, H. J. Zou, G. W. Lin, and R. R. Irons, “Genetic polymorphism of tumor necrosis factor-alpha in patients with chronic benzene poisoning,” Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, vol. 23, no. 3, pp. 195–198, 2005.
[88]  S. Y. Kordasti, B. Afzali, Z. Lim et al., “IL-17-producing CD4+ T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome,” The British Journal of Haematology, vol. 145, no. 1, pp. 64–72, 2009.
[89]  S. Y. Kordasti, W. Ingram, J. Hayden et al., “CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS),” Blood, vol. 110, no. 3, pp. 847–850, 2007.
[90]  P. J. Kerzic, D. W. Pyatt, J. H. Zheng, S. A. Gross, A. Le, and R. D. Irons, “Inhibition of NF-κB by hydroquinone sensitizes human bone marrow progenitor cells to TNF-α-induced apoptosis,” Toxicology, vol. 187, no. 2-3, pp. 127–137, 2003.
[91]  C. Acquaviva, V. Gelsi-Boyer, and D. Birnbaum, “Myelodysplastic syndromes: lost between two states,” Leukemia, vol. 24, no. 1, pp. 1–5, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413