全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dendritic Cell Development: A Choose-Your-Own-Adventure Story

DOI: 10.1155/2013/949513

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dendritic cells (DCs) are essential components of the immune system and contribute to immune responses by activating or tolerizing T cells. DCs comprise a heterogeneous mixture of subsets that are located throughout the body and possess distinct and specialized functions. Although numerous defined precursors from the bone marrow and spleen have been identified, emerging data in the field suggests many alternative routes of DC differentiation from precursors with multilineage potential. Here, we discuss how the combinatorial expression of transcription factors can promote one DC lineage over another as well as the integration of cytokine signaling in this process. 1. Introduction Dendritic cells (DCs) are professional antigen-presenting cells that bridge the gap between the innate and adaptive immune systems by acting as sentinels throughout the body to capture, process, and present antigen to T cells. Their ability to distinguish between self and nonself molecules allows them to deliver tolerizing or activating signals to T cells accordingly. Scientific exploration of DCs has become increasingly complex with the recognition that DCs exist as a heterogenous mixture of populations. Named for their cellular size and morphology [1], DCs all share the ability to activate na?ve T cells but exhibit unique functions within each subset. These DC populations have primarily been defined by their combinatorial cell surface marker expression, but they also differ in their developmental origins, transcriptional regulation, patterns of migration or residence, and anatomical and microenvironmental localization. DCs can be broadly classified as two major subsets: the inflammatory or infection-derived DCs, which develop from monocytes in response to stimulation, and the steady-state DCs, which are present at all times. The DCs present under steady state conditions include CD8+ and CD8? conventional DCs (cDCs), plasmacytoid DCs (pDCs), and migratory CD103+ CD11b? DCs, CD103? CD11b+ DCs, and Langerhans cells (LCs) (Table 1). The CD8? cDCs can be further classified as CD4+ or CD4? DCs, which both express high levels of CD11b [2]. However, the majority of gene perturbation analyses that have examined CD8+ cDCs, CD8? cDC, and pDCs as well as global gene analysis have shown mostly congruent gene expression between the CD4+ and CD4? subsets [3]; thus, we will classify CD4+ and CD4? DCs as CD8? DCs for simplicity. Table 1: Surface molecule expression of steady state dendritic cell subsets. Phenotype of lymphoid-resident CD8 + cDC, CD8 ? cDC, pDC, nonlymphoid tissue-resident

References

[1]  R. M. Steinman and Z. A. Cohn, “Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution,” The Journal of Immunology, vol. 137, no. 5, pp. 1142–1162, 1973.
[2]  D. Vremec, J. Pooley, H. Hochrein, L. Wu, and K. Shortman, “CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen,” The Journal of Immunology, vol. 164, no. 6, pp. 2978–2986, 2000.
[3]  A. D. Edwards, D. Chaussabel, S. Tomlinson, O. Schulz, A. Sher, and C. Reis e Sousa, “Relationships among murine CD11chigh dendritic cell subsets as revealed by baseline gene expression patterns,” The Journal of Immunology, vol. 171, no. 1, pp. 47–60, 2003.
[4]  F. Eckert and U. Schmid, “Identification of plasmacytoid T cells in lymphoid hyperplasia of the skin,” Archives of Dermatology, vol. 125, no. 11, pp. 1518–1524, 1989.
[5]  F. P. Siegal, N. Kadowaki, M. Shodell et al., “The nature of the principal type 1 interferon-producing cells in human blood,” Science, vol. 284, no. 5421, pp. 1835–1837, 1999.
[6]  J. M. M. den Haan, S. M. Lehar, and M. J. Bevan, “CD8+ but not CD8- dendritic cells cross-prime cytotoxic T cells in vivo,” Journal of Experimental Medicine, vol. 192, no. 12, pp. 1685–1696, 2000.
[7]  K. Hildner, B. T. Edelson, W. E. Purtha et al., “Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity,” Science, vol. 322, no. 5904, pp. 1097–1100, 2008.
[8]  C. Koble and B. Kyewski, “The thymic medulla: a unique microenvironment for intercellular self-antigen transfer,” Journal of Experimental Medicine, vol. 206, no. 7, pp. 1505–1513, 2009.
[9]  A. M. Gallegos and M. J. Bevan, “Central tolerance: good but imperfect,” Immunological Reviews, vol. 209, pp. 290–296, 2006.
[10]  T. Brocker, M. Riedinger, and K. Karjalainen, “Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo,” Journal of Experimental Medicine, vol. 185, no. 3, pp. 541–550, 1997.
[11]  T. Birnberg, L. Bar-On, A. Sapoznikov et al., “Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome,” Immunity, vol. 29, no. 6, pp. 986–997, 2008.
[12]  B. Pulendran, J. Lingappa, M. K. Kennedy et al., “Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice,” The Journal of Immunology, vol. 159, no. 5, pp. 2222–2231, 1997.
[13]  D. Dudziak, A. O. Kamphorst, G. F. Heidkamp et al., “Differential antigen processing by dendritic cell subsets in vivo,” Science, vol. 315, no. 5808, pp. 107–111, 2007.
[14]  M. Bogunovic, F. Ginhoux, J. Helft et al., “Origin of the lamina propria dendritic cell network,” Immunity, vol. 31, no. 3, pp. 513–525, 2009.
[15]  M. Merad, F. Ginhoux, and M. Collin, “Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells,” Nature Reviews Immunology, vol. 8, no. 12, pp. 935–947, 2008.
[16]  N. Romani, B. E. Clausen, and P. Stoitzner, “Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin,” Immunological Reviews, vol. 234, no. 1, pp. 120–141, 2010.
[17]  M. Collin, V. Bigley, M. Haniffa, and S. Hambleton, “Human dendritic cell deficiency: the missing ID?” Nature Reviews Immunology, vol. 11, no. 9, pp. 575–583, 2011.
[18]  A. Dzionek, A. Fuchs, P. Schmidt et al., “BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood,” The Journal of Immunology, vol. 165, no. 11, pp. 6037–6046, 2000.
[19]  A. Bachem, S. Güttler, E. Hartung et al., “Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1273–1281, 2010.
[20]  K. Crozat, R. Guiton, V. Contreras et al., “The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1283–1292, 2010.
[21]  S. L. Jongbloed, A. J. Kassianos, K. J. McDonald et al., “Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1247–1260, 2010.
[22]  L. F. Poulin, M. Salio, E. Griessinger et al., “Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1261–1271, 2010.
[23]  P. Brawand, D. R. Fitzpatrick, B. W. Greenfield, K. Brasel, C. R. Maliszewski, and T. De Smedt, “Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs,” The Journal of Immunology, vol. 169, no. 12, pp. 6711–6719, 2002.
[24]  M. O'Keeffe, H. Hochrein, D. Vremec et al., “Mouse plasmacytoid cells: Long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus,” Journal of Experimental Medicine, vol. 196, no. 10, pp. 1307–1319, 2002.
[25]  H. Luche, L. Ardouin, P. Teo et al., “The earliest intrathymic precursors of CD8α+ thymic dendritic cells correspond to myeloid-type double-negative 1c cells,” European The Journal of Immunology, vol. 41, no. 8, pp. 2165–2175, 2011.
[26]  R. P. DeKoter, J. C. Walsh, and H. Singh, “PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors,” EMBO Journal, vol. 17, no. 15, pp. 4456–4468, 1998.
[27]  H. L. Pahl, R. J. Scheibe, D. E. Zhang, et al., “The proto-oncogene PU. 1 regulates expression of the myeloid-specific CD11b promoter,” The Journal of Biological Chemistry, vol. 268, no. 7, pp. 5014–5020, 1993.
[28]  Y. Laouar, T. Welte, X. Y. Fu, and R. A. Flavell, “STAT3 is required for Flt3L-dependent dendritic cell differentiation,” Immunity, vol. 19, no. 6, pp. 903–912, 2003.
[29]  E. Esashi, Y. H. Wang, O. Perng, X. F. Qin, Y. J. Liu, and S. S. Watowich, “The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8,” Immunity, vol. 28, no. 4, pp. 509–520, 2008.
[30]  M. Kashiwada, N. L. L. Pham, L. L. Pewe, J. T. Harty, and P. B. Rothman, “NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development,” Blood, vol. 117, no. 23, pp. 6193–6197, 2011.
[31]  R. Tussiwand, W. L. Lee, T. L. Murphy, et al., “Compensatory dendritic cell development mediated by BATF-IRF interactions,” Nature, vol. 490, no. 421, pp. 502–507, 2012.
[32]  C. J. Spooner, J. X. Cheng, E. Pujadas, P. Laslo, and H. Singh, “A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates,” Immunity, vol. 31, no. 4, pp. 576–586, 2009.
[33]  R. Yücel, H. Karsunky, L. Klein-Hitpass, and T. M?r?y, “The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit+ T cell progenitors and CD4/CD8 lineage decision in the thymus,” Journal of Experimental Medicine, vol. 197, no. 7, pp. 831–844, 2003.
[34]  B. Cisse, M. L. Caton, M. Lehner et al., “Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development,” Cell, vol. 135, no. 1, pp. 37–48, 2008.
[35]  A. J. Moore, J. Sarmiento, M. Mohtashami, et al., “Transcriptional priming of intrathymic precursors for dendritic cell development,” Development, vol. 139, no. 2, pp. 373–384, 2011.
[36]  M. Kondo, I. L. Weissman, and K. Akashi, “Identification of clonogenic common lymphoid progenitors in mouse bone marrow,” Cell, vol. 91, no. 5, pp. 661–672, 1997.
[37]  K. Akashi, D. Traver, T. Miyamoto, and I. L. Weissman, “A clonogenic common myeloid progenitor that gives rise to all myeloid lineages,” Nature, vol. 404, no. 6774, pp. 193–197, 2000.
[38]  D. Traver, K. Akashi, M. Manz et al., “Development of CD8α-positive dendritic cells from a common myeloid progenitor,” Science, vol. 290, no. 5499, pp. 2152–2154, 2000.
[39]  M. G. Manz, D. Traver, T. Miyamoto, I. L. Weissman, and K. Akashi, “Dendritic cell potentials of early lymphoid and myeloid progenitors,” Blood, vol. 97, no. 11, pp. 3333–3341, 2001.
[40]  L. Wu, A. D'Amico, H. Hochrein, M. O'Keeffe, K. Shortman, and K. Lucas, “Development of thymic and splenic dendritic cell populations from different hemopoietic precursors,” Blood, vol. 98, no. 12, pp. 3376–3382, 2001.
[41]  C. Waskow, K. Liu, G. Darrasse-Jèze et al., “The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues,” Nature Immunology, vol. 9, no. 6, pp. 676–683, 2008.
[42]  A. D'Amico and L. Wu, “The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3,” Journal of Experimental Medicine, vol. 198, no. 2, pp. 293–303, 2003.
[43]  S. M. Schlenner, V. Madan, K. Busch et al., “Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus,” Immunity, vol. 32, no. 3, pp. 426–436, 2010.
[44]  D. K. Fogg, C. Sibon, C. Miled et al., “A clonogenic bone harrow progenitor specific for macrophages and dendritic cells,” Science, vol. 311, no. 5757, pp. 83–87, 2006.
[45]  S. H. Naik, P. Sathe, H. Y. Park et al., “Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo,” Nature Immunology, vol. 8, no. 11, pp. 1217–1226, 2007.
[46]  N. Onai, A. Obata-Onai, M. A. Schmid, T. Ohteki, D. Jarrossay, and M. G. Manz, “Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow,” Nature Immunology, vol. 8, no. 11, pp. 1207–1216, 2007.
[47]  K. Liu, G. D. Victora, T. A. Schwickert et al., “In vivo analysis of dendritic cell development and homeostasis,” Science, vol. 324, no. 5925, pp. 392–397, 2009.
[48]  F. Ginhoux, K. Liu, J. Helft et al., “The origin and development of nonlymphoid tissue CD103+ DCs,” Journal of Experimental Medicine, vol. 206, no. 13, pp. 3115–3130, 2009.
[49]  C. Ardavin, L. Wu, C. L. Li, and K. Shortman, “Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population,” Nature, vol. 362, no. 6422, pp. 761–763, 1993.
[50]  F. Radtke, I. Ferrero, A. Wilson, R. Lees, M. Aguet, and H. R. MacDonald, “Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells,” Journal of Experimental Medicine, vol. 191, no. 7, pp. 1085–1094, 2000.
[51]  T. B. Feyerabend, G. Terszowski, A. Tietz et al., “Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms,” Immunity, vol. 30, no. 1, pp. 67–79, 2009.
[52]  E. Donskoy and I. Goldschneider, “Two developmentally distinct populations of dendritic cells inhabit the adult mouse thymus: demonstration by differential importation of hematogenous precursors under steady state conditions,” The Journal of Immunology, vol. 170, no. 7, pp. 3514–3521, 2003.
[53]  J. Li, J. Park, D. Foss, and I. Goldschneider, “Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 607–622, 2009.
[54]  H. Hadeiba, K. Lahl, A. Edalati, et al., “Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance,” Immunity, vol. 36, no. 3, pp. 438–450, 2012.
[55]  H. T. Petrie and J. C. Zú?iga-Pflücker, “Zoned out: functional mapping of stromal signaling microenvironments in the thymus,” Annual Review of Immunology, vol. 25, no. 1, pp. 649–679, 2007.
[56]  A. V. Griffith, M. Fallahi, H. Nakase, M. Gosink, B. Young, and H. T. Petrie, “Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation,” Immunity, vol. 31, no. 6, pp. 999–1009, 2009.
[57]  A. Bhandoola, H. von Boehmer, H. T. Petrie, and J. C. Zú?iga-Pflücker, “Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from,” Immunity, vol. 26, no. 6, pp. 678–689, 2007.
[58]  L. Corcoran, I. Ferrero, D. Vremec et al., “The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells,” The Journal of Immunology, vol. 170, no. 10, pp. 4926–4932, 2003.
[59]  S. M. Schlenner and H. R. Rodewald, “Early T cell development and the pitfalls of potential,” Trends in Immunology, vol. 31, no. 8, pp. 303–310, 2010.
[60]  M. A. Yui, N. Feng, and E. V. Rothenberg, “Fine-scale staging of T cell lineage commitment in adult mouse thymus,” The Journal of Immunology, vol. 185, no. 1, pp. 284–293, 2010.
[61]  L. Li, M. Leid, and E. V. Rothenberg, “An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b,” Science, vol. 329, no. 5987, pp. 89–93, 2010.
[62]  H. E. Porritt, L. L. Rumfelt, S. Tabrizifard, T. M. Schmitt, J. C. Zú?iga-Pflücker, and H. T. Petrie, “Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages,” Immunity, vol. 20, no. 6, pp. 735–745, 2004.
[63]  K. Masuda, K. Kakugawa, T. Nakayama, N. Minato, Y. Katsura, and H. Kawamoto, “T cell lineage determination precedes the initiation of TCRβ gene rearrangement,” The Journal of Immunology, vol. 179, no. 6, pp. 3699–3706, 2007.
[64]  J. J. Bell and A. Bhandoola, “The earliest thymic progenitors for T cells possess myeloid lineage potential,” Nature, vol. 452, no. 7188, pp. 764–767, 2008.
[65]  H. Wada, K. Masuda, R. Satoh et al., “Adult T-cell progenitors retain myeloid potential,” Nature, vol. 452, no. 7188, pp. 768–772, 2008.
[66]  L. Wu, C. L. Li, and K. Shortman, “Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny,” Journal of Experimental Medicine, vol. 184, no. 3, pp. 903–911, 1996.
[67]  J. C. Miller, B. D. Brown, T. Shay, et al., “Deciphering the transcriptional network of the dendritic cell lineage,” Nature Immunology, vol. 13, no. 9, pp. 888–899, 2012.
[68]  J. Medvedovic, A. Ebert, and H. Tagoh, Busslinger M. Pax5: A Master Regulator of B Cell Development and Leukemogenesis, Elsevier, New York, NY, USA, 1st edition, 2011.
[69]  S. Carotta, L. Wu, and S. L. Nutt, “Surprising new roles for PU.1 in the adaptive immune response,” Immunological Reviews, vol. 238, no. 1, pp. 63–75, 2010.
[70]  M. K. Anderson, G. Hernandez-Hoyos, R. A. Diamond, and E. V. Rothenberg, “Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage,” Development, vol. 126, no. 14, pp. 3131–3148, 1999.
[71]  A. Guerriero, P. B. Langmuir, L. M. Spain, and E. W. Scott, “PU.1 is required for myeloid-derived but not lymphoid-derived dendritic cells,” Blood, vol. 95, no. 3, pp. 879–885, 2000.
[72]  K. L. Anderson, H. Perkin, C. D. Surh, S. Venturini, R. A. Maki, and B. E. Torbett, “Transcription factor PU.1 is necessary for development of thymic and myeloid progenitor-derived dendritic cells,” The Journal of Immunology, vol. 164, no. 4, pp. 1855–1861, 2000.
[73]  A. Dakic, Q. X. Shao, A. D'Amico et al., “Development of the dendritic cell system during mouse ontogeny,” The Journal of Immunology, vol. 172, no. 2, pp. 1018–1027, 2004.
[74]  S. Carotta, A. Dakic, A. D'Amico et al., “The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner,” Immunity, vol. 32, no. 5, pp. 628–641, 2010.
[75]  R. P. DeKoter, H. J. Lee, and H. Singh, “PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors,” Immunity, vol. 16, no. 2, pp. 297–309, 2002.
[76]  R. P. DeKoter and H. Singh, “Regulation of B lymphocyte and macrophage development by graded expression of PU.1,” Science, vol. 288, no. 5470, pp. 1439–1441, 2000.
[77]  P. Laslo, C. J. Spooner, A. Warmflash et al., “Multilineage transcriptional priming and determination of alternate hematopoietic cell fates,” Cell, vol. 126, no. 4, pp. 755–766, 2006.
[78]  Y. Bakri, S. Sarrazin, U. P. Mayer et al., “Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate,” Blood, vol. 105, no. 7, pp. 2707–2716, 2005.
[79]  M. K. Anderson, A. H. Weiss, G. Hernandez-Hoyos, C. J. Dionne, and E. V. Rothenberg, “Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro-T cell stage,” Immunity, vol. 16, no. 2, pp. 285–296, 2002.
[80]  L. M. Spain, A. Guerriero, S. Kunjibettu, and E. W. Scott, “T cell development in PU.1-deficient mice,” The Journal of Immunology, vol. 163, no. 5, pp. 2681–2687, 1999.
[81]  D. E. Zhang, C. J. Hetherington, H. M. Chen, and D. G. Tenen, “The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor,” Molecular and Cellular Biology, vol. 14, no. 1, pp. 373–381, 1994.
[82]  S. Hohaus, M. S. Petrovick, M. T. Voso, Z. Sun, D. Zhang, and D. G. Tenen, “PU.1 (Spi-1) and C/EBPα regulate expression of the granulocyte-macrophage colony-stimulating factor receptor α gene,” Molecular and Cellular Biology, vol. 15, no. 10, pp. 5830–5845, 1995.
[83]  J. A. Zhang, A. Mortazavi, B. A. Williams, B. J. Wold, and E. V. Rothenberg, “Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity,” Cell, vol. 149, no. 2, pp. 467–482, 2012.
[84]  C. B. Franco, D. D. Scripture-Adams, I. Proekt, et al., “Notch/δ signaling constrains reengineering of pro-T cells by PU. 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 32, pp. 11993–11998, 2006.
[85]  G. H. Su, H. M. Chen, N. Muthusamy, et al., “Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B,” The EMBO Journal, vol. 16, no. 23, pp. 7118–7129, 1997.
[86]  R. Dahl, D. L. Ramirez-Bergeron, S. Rao, and M. C. Simon, “Spi-B can functionally replace PU.1 in myeloid but not lymphoid development,” EMBO Journal, vol. 21, no. 9, pp. 2220–2230, 2002.
[87]  R. Schotte, M. C. Rissoan, N. Bendriss-Vermare et al., “The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development,” Blood, vol. 101, no. 3, pp. 1015–1023, 2003.
[88]  R. Schotte, M. Nagasawa, K. Weijer, H. Spits, and B. Blom, “The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development,” Journal of Experimental Medicine, vol. 200, no. 11, pp. 1503–1509, 2004.
[89]  I. Sasaki, K. Hoshino, T. Sugiyama, et al., “Spi-B is critical for plasmacytoid dendritic cell function and development,” Blood, vol. 120, no. 24, pp. 4733–4743, 2012.
[90]  J. M. Lefebvre, M. C. Haks, M. O. Carleton, et al., “Enforced expression of Spi-B reverses T lineage commitment and blocks beta-selection,” The Journal of Immunology, vol. 174, no. 10, pp. 6184–6194, 2005.
[91]  L. B. John and A. C. Ward, “The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity,” Molecular Immunology, vol. 48, no. 9-10, pp. 1272–1278, 2011.
[92]  L. Wu, A. Nichogiannopoulou, K. Shortman, and K. Georgopoulos, “Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage,” Immunity, vol. 7, no. 4, pp. 483–492, 1997.
[93]  D. Allman, M. Dalod, C. Asselin-Paturel et al., “Ikaros is required for plasmacytoid dendritic cell differentiation,” Blood, vol. 108, no. 13, pp. 4025–4034, 2006.
[94]  A. Nichogiannopoulou, M. Trevisan, S. Neben, C. Friedrich, and K. Georgopoulos, “Defects in hemopoietic stem cell activity in Ikaros mutant mice,” Journal of Experimental Medicine, vol. 190, no. 9, pp. 1201–1214, 1999.
[95]  M. A. Zarnegar and E. V. Rothenberg, “Ikaros represses and activates PU.1 cell-type-specifically through the multifunctional Sfpi1 URE and a myeloid specific enhancer,” Oncogene, vol. 31, no. 43, pp. 4647–4654, 2012.
[96]  C. Rathinam, R. Geffers, R. Yücel et al., “The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function,” Immunity, vol. 22, no. 6, pp. 717–728, 2005.
[97]  H. Li, M. Ji, K. D. Klarmann, and J. R. Keller, “Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development,” Blood, vol. 116, no. 7, pp. 1060–1069, 2010.
[98]  R. Yücel, C. Kosan, F. Heyd, and T. M?r?y, “Gfi1:green fluorescent protein knock-in mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development,” The Journal of Biological Chemistry, vol. 279, no. 39, pp. 40906–40917, 2004.
[99]  A. T. Satpathy, K. M. Murphy, and K. C. Wumesh, “Transcription factor networks in dendritic cell development,” Seminars in Immunology, vol. 23, no. 5, pp. 388–397, 2011.
[100]  M. M. Meredith, K. Liu, G. Darrasse-Jeze, et al., “Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage,” Journal of Experimental Medicine, vol. 209, no. 6, pp. 1153–1165, 2012.
[101]  A. T. Satpathy, K. C. Wumesh, J. C. Albring, et al., “Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages,” Journal of Experimental Medicine, vol. 209, no. 6, pp. 1135–1152, 2012.
[102]  M. M. Meredith, K. Liu, A. O. Kamphorst, et al., “Zinc finger transcription factor zDC is a negative regulator required to prevent activation of classical dendritic cells in the steady state,” Journal of Experimental Medicine, vol. 209, no. 9, pp. 1583–1593, 2012.
[103]  C. Deweindt, O. Albagli, F. Bernardin et al., “The LAZ3/BCL6 oncogene encodes a sequence-specific transcriptional inhibitor: a novel function for the BTB/POZ domain as an autonomous repressing domain,” Cell Growth and Differentiation, vol. 6, no. 12, pp. 1495–1503, 1995.
[104]  O. Albagli, P. Dhordain, F. Bernardin, S. Quief, J. P. Kerckaert, and D. Leprince, “Multiple domains participate in distance-independent LAZ3/BCL6-mediated transcriptional repression,” Biochemical and Biophysical Research Communications, vol. 220, no. 3, pp. 911–915, 1996.
[105]  R. T. Phan and R. Dalla-Favera, “The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells,” Nature, vol. 432, no. 7017, pp. 635–639, 2004.
[106]  A. L. Dent, A. L. Shaffer, X. Yu, D. Allman, and L. M. Staudt, “Control of inflammation, cytokine expression, and germinal center formation by BCL-6,” Science, vol. 276, no. 5312, pp. 589–592, 1997.
[107]  B. H. Ye, G. Cattoretti, Q. Shen et al., “The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation,” Nature Genetics, vol. 16, no. 2, pp. 161–170, 1997.
[108]  M. Shapiro-Shelef and K. C. Calame, “Regulation of plasma-cell development,” Nature Reviews Immunology, vol. 5, no. 3, pp. 230–242, 2005.
[109]  H. Ohtsuka, A. Sakamoto, J. Pan et al., “Bcl6 is required for the development of mouse CD4+ and CD8α+ dendritic cells,” The Journal of Immunology, vol. 186, no. 1, pp. 255–263, 2011.
[110]  J. T. Jackson, Y. Hu, R. Liu et al., “Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages,” EMBO Journal, vol. 30, no. 13, pp. 2690–2704, 2011.
[111]  C. Hacker, R. D. Kirsch, X. S. Ju, et al., “Transcriptional profiling identifies Id2 function in dendritic cell development,” Nature Immunology, vol. 4, no. 4, pp. 380–386, 2003.
[112]  H. S. Ghosh, B. Cisse, A. Bunin, K. L. Lewis, and B. Reizis, “Continuous expression of the transcription factor E2-2 maintains the cell fate of mature plasmacytoid dendritic cells,” Immunity, vol. 33, no. 6, pp. 905–916, 2010.
[113]  D. Wang, C. L. Claus, G. Vaccarelli et al., “The basic helix-loop-helix transcription factor HEBAlt is expressed in pro-T cells and enhances the generation of t cell precursors,” The Journal of Immunology, vol. 177, no. 1, pp. 109–119, 2006.
[114]  M. Braunstein and M. K. Anderson, “HEB in the spotlight: transcriptional regulation of T-cell specification, commitment, and developmental plasticity,” Clinical and Developmental Immunology, vol. 2012, Article ID 678705, 15 pages, 2012.
[115]  B. T. Edelson, K. C. Wumesh, R. Juang et al., “Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells,” Journal of Experimental Medicine, vol. 207, no. 4, pp. 823–836, 2010.
[116]  D. M. Gascoyne, E. Long, H. Veiga-Fernandes et al., “The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development,” Nature Immunology, vol. 10, no. 10, pp. 1118–1124, 2009.
[117]  S. Kamizono, G. S. Duncan, M. G. Seidel et al., “Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo,” Journal of Experimental Medicine, vol. 206, no. 13, pp. 2977–2986, 2009.
[118]  L. Burkly, C. Hession, L. Ogata et al., “Expression of relB is required for the development of thymic medulla and dendritic cells,” Nature, vol. 373, no. 6514, pp. 531–536, 1995.
[119]  L. Wu, A. D'Amico, K. D. Winkel, M. Suter, D. Lo, and K. Shortman, “RelB is essential for the development of myeloid-related CD8α- dendritic cells but not of lymphoid-related CD8α+ dendritic cells,” Immunity, vol. 9, no. 6, pp. 839–847, 1998.
[120]  S. C. Sun, “The noncanonical NF-κB pathway,” Immunological Reviews, vol. 246, no. 1, pp. 125–140, 2012.
[121]  A. Le Bon, M. Montoya, M. J. Edwards et al., “A role for the transcription factor RelB in IFN-α production and in IFN-α-stimulated cross-priming,” European The Journal of Immunology, vol. 36, no. 8, pp. 2085–2093, 2006.
[122]  M. Li, X. Zhang, X. Zheng, et al., “Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference,” The Journal of Immunology, vol. 178, no. 9, pp. 5480–5487, 2007.
[123]  A. Battistini, “Interferon regulatory factors in hematopoietic cell differentiation and immune regulation,” Journal of Interferon and Cytokine Research, vol. 29, no. 12, pp. 765–780, 2009.
[124]  G. Schiavoni, F. Mattei, P. Sestili et al., “ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α+ dendritic cells,” Journal of Experimental Medicine, vol. 196, no. 11, pp. 1415–1425, 2002.
[125]  J. Aliberti, O. Schulz, D. J. Pennington et al., “Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells,” Blood, vol. 101, no. 1, pp. 305–310, 2003.
[126]  G. Schiavoni, F. Mattei, P. Borghi et al., “ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells,” Blood, vol. 103, no. 6, pp. 2221–2228, 2004.
[127]  H. Tsujimura, T. Tamura, and K. Ozato, “Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells,” The Journal of Immunology, vol. 170, no. 3, pp. 1131–1135, 2003.
[128]  P. Tailor, T. Tamura, H. C. Morse, and K. Ozato, “The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse,” Blood, vol. 111, no. 4, pp. 1942–1945, 2008.
[129]  S. Suzuki, K. Honma, T. Matsuyama, et al., “Critical roles of interferon regulatory factor 4 in CD8α- dendritic cell development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 24, pp. 8981–8986, 2004.
[130]  T. Tamura, P. Tailor, K. Yamaoka et al., “IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity,” The Journal of Immunology, vol. 174, no. 5, pp. 2573–2581, 2005.
[131]  S. Bajana, K. Roach, S. Turner, J. Paul, and S. Kovats, “IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation,” The Journal of Immunology, vol. 189, no. 7, pp. 3368–3377, 2012.
[132]  L. Gabriele, A. Fragale, P. Borghi et al., “IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1500–1511, 2006.
[133]  K. Honda, T. Mizutani, and T. Taniguchi, “Negative regulation of IFN-α/β signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 8, pp. 2416–2421, 2004.
[134]  K. Inaba, M. Inaba, N. Romani et al., “Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 176, no. 6, pp. 1693–1702, 1992.
[135]  K. Brasel, T. De Smedt, J. L. Smith, and C. R. Maliszewski, “Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures,” Blood, vol. 96, no. 9, pp. 3029–3039, 2000.
[136]  M. Gilliet, A. Boonstra, C. Paturel et al., “The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 195, no. 7, pp. 953–958, 2002.
[137]  S. H. Naik, L. M. Corcoran, and L. Wu, “Development of murine plasmacytoid dendritic cell subsets,” Immunology and Cell Biology, vol. 83, no. 5, pp. 563–570, 2005.
[138]  B. Fancke, M. Suter, H. Hochrein, and M. O'Keeffe, “M-CSF: a novel plasmacytoid and conventional dendritic cell poietin,” Blood, vol. 111, no. 1, pp. 150–159, 2008.
[139]  H. Karsunky, M. Merad, A. Cozzio, I. L. Weissman, and M. G. Manz, “Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo,” Journal of Experimental Medicine, vol. 198, no. 2, pp. 305–313, 2003.
[140]  J. L. Christensen and I. L. Weissman, “Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14541–14546, 2001.
[141]  E. Sitnicka, D. Bryder, K. Theilgaard-M?nch, N. Buza-Vidas, J. Adolfsson, and S. E. W. Jacobsen, “Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool,” Immunity, vol. 17, no. 4, pp. 463–472, 2002.
[142]  N. Onai, A. Obata-Onai, R. Tussiwand, A. Lanzavecchia, and M. G. Manz, “Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development,” Journal of Experimental Medicine, vol. 203, no. 1, pp. 227–238, 2006.
[143]  H. J. McKenna, K. L. Stocking, R. E. Miller et al., “Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells,” Blood, vol. 95, no. 11, pp. 3489–3497, 2000.
[144]  M. D. Witmer-Pack, D. A. Hughes, G. Schuler et al., “Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse,” Journal of Cell Science, vol. 104, no. 4, pp. 1021–1029, 1993.
[145]  K. P. A. MacDonald, V. Rowe, H. M. Bofinger et al., “The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion,” The Journal of Immunology, vol. 175, no. 3, pp. 1399–1405, 2005.
[146]  F. Ginhoux, M. Greter, M. Leboeuf et al., “Fate mapping analysis reveals that adult microglia derive from primitive macrophages,” Science, vol. 330, no. 6005, pp. 841–845, 2010.
[147]  R. M. Ransohoff and A. E. Cardona, “The myeloid cells of the central nervous system parenchyma,” Nature, vol. 468, no. 7321, pp. 253–262, 2010.
[148]  G. Hoeffel, Y. Wang, M. Greter, et al., “Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages,” Journal of Experimental Medicine, vol. 209, no. 6, pp. 1167–1181, 2012.
[149]  F. Ginhoux, F. Tacke, V. Angeli et al., “Langerhans cells arise from monocytes in vivo,” Nature Immunology, vol. 7, no. 3, pp. 265–273, 2006.
[150]  H. Lin, E. Lee, K. Hestir et al., “Discovery of a cytokine and its receptor by functional screening of the extracellular proteome,” Science, vol. 320, no. 5877, pp. 807–811, 2008.
[151]  Y. Wang, K. J. Szretter, W. Vermi, et al., “IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia,” Nature Immunology, vol. 13, no. 8, pp. 753–760, 2012.
[152]  M. Greter, I. Lelios, P. Pelczar, et al., “Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia,” Immunity, vol. 37, no. 6, pp. 1050–1060, 2012.
[153]  D. Kingston, M. A. Schmid, N. Onai, A. Obata-Onai, D. Baumjohann, and M. G. Manz, “The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis,” Blood, vol. 114, no. 4, pp. 835–843, 2009.
[154]  R. T. Sasmono, D. Oceandy, J. W. Pollard et al., “A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse,” Blood, vol. 101, no. 3, pp. 1155–1163, 2003.
[155]  D. Vremec, G. J. Lieschke, A. R. Dunn, L. Robb, D. Metcalf, and K. Shortman, “The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs,” European The Journal of Immunology, vol. 27, no. 1, pp. 40–44, 1997.
[156]  Y. Zhan, J. Vega-Ramos, E. M. Carrington, et al., “The inflammatory cytokine, GM-CSF, alters the developmental outcome of murine dendritic cells,” European Journal of Immunology, vol. 42, no. 11, pp. 2889–2900, 2012.
[157]  I. L. King, M. A. Kroenke, and B. M. Segal, “GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization,” Journal of Experimental Medicine, vol. 207, no. 5, pp. 953–961, 2010.
[158]  M. Greter, J. Helft, A. Chow, et al., “GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells,” Immunity, vol. 36, no. 6, pp. 1031–1046, 2012.
[159]  B. T. Edelson, T. R. Bradstreet, K. C. Wumesh, et al., “Batf3-dependent CD11blow/-peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization,” PLoS ONE, vol. 6, no. 10, Article ID e25660, 2011.
[160]  D. Saunders, K. Lucas, J. Ismaili et al., “Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 184, no. 6, pp. 2185–2196, 1996.
[161]  P. Sathe, J. Pooley, D. Vremec et al., “The acquisition of antigen cross-presentation function by newly formed dendritic cells,” The Journal of Immunology, vol. 186, no. 9, pp. 5184–5192, 2011.
[162]  Y. Zhan, E. M. Carrington, A. van Nieuwenhuijze, et al., “GM-CSF increases cross-presentation and CD103 expression by mouse CD8+ spleen dendritic cells,” European Journal of Immunology, vol. 41, no. 9, pp. 2585–2595, 2011.
[163]  E. V. Rothenberg, J. E. Moore, and M. A. Yui, “Launching the T-cell-lineage developmental programme,” Nature Reviews Immunology, vol. 8, no. 1, pp. 9–21, 2008.
[164]  J. H. Wang, A. Nichogiannopoulou, L. Wu et al., “Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation,” Immunity, vol. 5, no. 6, pp. 537–549, 1996.
[165]  P. M. Domínguez and C. Ardavín, “Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation,” Immunological Reviews, vol. 234, no. 1, pp. 90–104, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413