全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Bone Marrow Microenvironment as Niche Retreats for Hematopoietic and Leukemic Stem Cells

DOI: 10.1155/2013/953982

Full-Text   Cite this paper   Add to My Lib

Abstract:

Leukemia poses a serious challenge to current therapeutic strategies. This has been attributed to leukemia stem cells (LSCs), which occupy endosteal and sinusoidal niches in the bone marrow similar to those of hematopoietic stem cells (HSCs). The signals from these niches provide a viable setting for the maintenance, survival, and fate specifications of these stem cells. Advancements in genetic engineering and microscopy have enabled us to critically deconstruct and analyze the anatomic and functional characteristics of these niches to reveal a wealth of new knowledge in HSC biology, which is quite ahead of LSC biology. In this paper, we examine the present understanding of the regulatory mechanisms governing HSC niches, with the goals of providing a framework for understanding the mechanisms of LSC regulation and suggesting future strategies for their elimination. 1. Introduction A dysfunctional stem cell microenvironment, or niche, contributes significantly to disease pathology, particularly in cancer [1]. Characterization of the cells that form this niche and the mechanisms by which they regulate stem cell function is imperative for understanding the pathophysiology of diseases that arise in this setting. Stem cells have the unique ability to self-renew, differentiate into multiple lineages, and withstand stress signals to survive and function [2, 3]. In the bone marrow, hematopoietic stem cells (HSCs) are essential for the production of both lymphoid and myeloid cells, which are necessary for the body’s immune integrity, oxygen delivery, blood clotting, waste removal, and a multitude of physiologic processes necessary for survival. For some time, the intracellular regulatory environment of HSCs has been studied in the isolation of its confines in the bone marrow, with little emphasis on the effects this environment might have on these cells’ survival and fate specifications [4]. Testing of the prevailing theory, proposed by Schofield, regarding the underlying indispensable role of the bone marrow structure in engineering hematopoiesis [5] became possible only with the advent and introduction of new in vivo technological tools such as intravital multiphoton microscopy (IVM), which is powerful in optical sectioning of deep tissues and providing real-time visualization of cellular interactions [5, 6]. This has led to a radical revolution in the way stem cells are studied in the bone marrow. IVM studies have shown that hematopoiesis depends not only on the cellular biology of HSCs, but also on the microenvironment where they reside, buttressing the

References

[1]  Z. Ju, H. Jiang, M. Jaworski et al., “Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment,” Nature Medicine, vol. 13, no. 6, pp. 742–747, 2007.
[2]  H. Lin, “The stem-cell niche theory: lessons from flies,” Nature Reviews Genetics, vol. 3, no. 12, pp. 931–940, 2002.
[3]  M. R. Wallenfang and E. Matunis, “Orienting stem cells,” Science, vol. 301, no. 5639, pp. 1490–1491, 2003.
[4]  A. Spradling, D. Drummond-Barbosa, and T. Kai, “Stem cells find their niche,” Nature, vol. 414, no. 6859, pp. 98–104, 2001.
[5]  R. Schofield, “The stem cell system,” Biomedicine & Pharmacotherapy, vol. 37, no. 8, pp. 375–380, 1983.
[6]  C. Lo Celso, H. E. Fleming, J. W. Wu et al., “Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche,” Nature, vol. 457, no. 7225, pp. 92–96, 2009.
[7]  G. B. Adams, K. T. Chabner, I. R. Alley et al., “Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor,” Nature, vol. 439, no. 7076, pp. 599–603, 2006.
[8]  L. M. Calvi, G. B. Adams, K. W. Weibrecht et al., “Osteoblastic cells regulate the haematopoietic stem cell niche,” Nature, vol. 425, no. 6960, pp. 841–846, 2003.
[9]  L. Ding, T. L. Saunders, G. Enikolopov, and S. J. Morrison, “Endothelial and perivascular cells maintain haematopoietic stem cells,” Nature, vol. 481, no. 7382, pp. 457–462, 2012.
[10]  M. J. Kiel, ?. H. Yilmaz, T. Iwashita, O. H. Yilmaz, C. Terhorst, and S. J. Morrison, “SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells,” Cell, vol. 121, no. 7, pp. 1109–1121, 2005.
[11]  S. K. Nilsson, H. M. Johnston, and J. A. Coverdale, “Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches,” Blood, vol. 97, no. 8, pp. 2293–2299, 2001.
[12]  D. Visnjic, Z. Kalajzic, D. W. Rowe, V. Katavic, J. Lorenzo, and H. L. Aguila, “Hematopoiesis is severely altered in mice with an induced osteoblast deficiency,” Blood, vol. 103, no. 9, pp. 3258–3264, 2004.
[13]  J. Zhang, C. Niu, L. Ye et al., “Identification of the haematopoietic stem cell niche and control of the niche size,” Nature, vol. 425, no. 6960, pp. 836–841, 2003.
[14]  J. Fujisaki, J. Wu, A. L. Carlson et al., “In vivo imaging of T reg cells providing immune privilege to the haematopoietic stem-cell niche,” Nature, vol. 474, no. 7350, pp. 216–219, 2011.
[15]  A. E. Karnoub, A. B. Dash, A. P. Vo et al., “Mesenchymal stem cells within tumour stroma promote breast cancer metastasis,” Nature, vol. 449, no. 7162, pp. 557–563, 2007.
[16]  D. Hanahan and L. M. Coussens, “Accessories to the crime: functions of cells recruited to the tumor microenvironment,” Cancer Cell, vol. 21, no. 3, pp. 309–322, 2012.
[17]  S. B. Coffelt, F. C. Marini, K. Watson et al., “The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 10, pp. 3806–3811, 2009.
[18]  E. Cukierman and D. Bassi, “The mesenchymal tumor microenvironment: a drug resistant niche,” Cell Adhesion & Migration, vol. 6, no. 3, pp. 285–296, 2012.
[19]  E. Passegué, E. F. Wagner, and I. L. Weissman, “JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells,” Cell, vol. 119, no. 3, pp. 431–443, 2004.
[20]  J. Lessard and G. Sauvageau, “Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells,” Nature, vol. 423, no. 6937, pp. 255–260, 2003.
[21]  I. K. Park, D. Qian, M. Kiel et al., “Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells,” Nature, vol. 423, no. 6937, pp. 302–305, 2003.
[22]  Y. Kato, A. Iwama, Y. Tadokoro et al., “Selective activation of STAT5 unveils its role in stem cell self-renewal in normal and leukemic hematopoiesis,” Journal of Experimental Medicine, vol. 202, no. 1, pp. 169–179, 2005.
[23]  Y. Shiozawa, A. M. Havens, K. J. Pienta, and R. S. Taichman, “The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites,” Leukemia, vol. 22, no. 5, pp. 941–950, 2008.
[24]  S. W. Lane, D. T. Scadden, and D. G. Gilliland, “The leukemic stem cell niche: current concepts and therapeutic opportunities,” Blood, vol. 114, no. 6, pp. 1150–1157, 2009.
[25]  M. Y. Konopleva and C. T. Jordan, “Leukemia stem cells and microenvironment: biology and therapeutic targeting,” Journal of Clinical Oncology, vol. 29, no. 5, pp. 591–599, 2011.
[26]  H. C. Schr?der, X. H. Wang, M. Wiens et al., “Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation,” Journal of Cellular Biochemistry, vol. 113, no. 10, pp. 3197–3206, 2012.
[27]  C. K. F. Chan, C. C. Chen, C. A. Luppen et al., “Endochondral ossification is required for haematopoietic stem-cell niche formation,” Nature, vol. 457, no. 7228, pp. 490–494, 2009.
[28]  A. Mansour, G. Abou-Ezzi, E. Sitnicka, S. E. Jacobsen, A. Wakkach, and C. Blin-Wakkach, “Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow,” Journal of Experimental Medicine, vol. 209, no. 3, pp. 537–549, 2012.
[29]  L. M. Calvi, O. Bromberg, Y. Rhee et al., “Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells,” Blood, vol. 119, no. 11, pp. 2489–2499, 2012.
[30]  K. Kataoka, T. Sato, A. Yoshimi et al., “Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity,” Journal of Experimental Medicine, vol. 208, no. 12, pp. 2403–2416, 2011.
[31]  A. Mullally, L. Poveromo, R. K. Schneider, F. Al-Shahrour, S. W. Lane, and B. L. Ebert, “Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera,” Blood, vol. 120, no. 1, pp. 166–172, 2012.
[32]  F. Notta, S. Doulatov, E. Laurenti, A. Poeppl, I. Jurisica, and J. E. Dick, “Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment,” Science, vol. 333, no. 6039, pp. 218–221, 2011.
[33]  S. J. Morrison and A. C. Spradling, “Stem cells and niches: mechanisms that promote stem cell maintenance throughout life,” Cell, vol. 132, no. 4, pp. 598–611, 2008.
[34]  S. Lymperi, N. Horwood, S. Marley, M. Y. Gordon, A. P. Cope, and F. Dazzi, “Strontium can increase some osteoblasts without increasing hematopoietic stem cells,” Blood, vol. 111, no. 3, pp. 1173–1181, 2008.
[35]  S. Lymperi, A. Ersek, F. Ferraro, F. Dazzi, and N. J. Horwood, “Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo,” Blood, vol. 117, no. 5, pp. 1540–1549, 2011.
[36]  I. G. Winkler, N. A. Sims, A. R. Pettit et al., “Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs,” Blood, vol. 116, no. 23, pp. 4815–4828, 2010.
[37]  A. Chow, D. Lucas, A. Hidalgo et al., “Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche,” The Journal of Experimental Medicine, vol. 208, no. 2, pp. 261–271, 2011.
[38]  I. G. Winkler, V. Barbier, R. Wadley, A. C. W. Zannettino, S. Williams, and J. P. Lévesque, “Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches,” Blood, vol. 116, no. 3, pp. 375–385, 2010.
[39]  D. C. Chow, L. A. Wenning, W. M. Miller, and E. T. Papoutsakis, “Modeling pO2 distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models,” Biophysical Journal, vol. 81, no. 2, pp. 685–696, 2001.
[40]  D. C. Chow, L. A. Wenning, W. M. Miller, and E. T. Papoutsakis, “Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh's model,” Biophysical Journal, vol. 81, no. 2, pp. 675–684, 2001.
[41]  K. Parmar, P. Mauch, J. A. Vergilio, R. Sackstein, and J. D. Down, “Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 13, pp. 5431–5436, 2007.
[42]  G. L. Semenza, “Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1,” Biochemical Journal, vol. 405, no. 1, pp. 1–9, 2007.
[43]  T. Simsek, F. Kocabas, J. Zheng et al., “The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche,” Cell Stem Cell, vol. 7, no. 3, pp. 380–390, 2010.
[44]  K. Miharada, G. Karlsson, M. Rehn, E. R?rby, K. Siva, and S. Karlsson, “Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78,” Cell Stem Cell, vol. 9, no. 4, pp. 330–344, 2011.
[45]  M. Rehn, A. Olsson, K. Reckzeh, E. Diffner, P. Carmeliet, and G. Landberg, “Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche,” Blood, vol. 118, no. 6, pp. 1534–1543, 2011.
[46]  E. B. Rankin, C. Wu, R. Khatri et al., “The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO,” Cell, vol. 149, no. 1, pp. 63–74, 2012.
[47]  M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple Human Organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008.
[48]  S. Méndez-Ferrer, T. V. Michurina, F. Ferraro et al., “Mesenchymal and haematopoietic stem cells form a unique bone marrow niche,” Nature, vol. 466, no. 7308, pp. 829–834, 2010.
[49]  F. Wein, L. Pietsch, R. Saffrich et al., “N-Cadherin is expressed on human hematopoietic progenitor cells and mediates interaction with human mesenchymal stromal cells,” Stem Cell Research, vol. 4, no. 2, pp. 129–139, 2010.
[50]  C. Mazzon, A. Anselmo, J. Cibella et al., “The critical role of agrin in the hematopoietic stem cell niche,” Blood, vol. 118, no. 10, pp. 2733–2742, 2011.
[51]  T. Sugiyama, H. Kohara, M. Noda, and T. Nagasawa, “Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone Marrow Stromal Cell Niches,” Immunity, vol. 25, no. 6, pp. 977–988, 2006.
[52]  H. E. Broxmeyer, C. M. Orschell, D. W. Clapp et al., “Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist,” Journal of Experimental Medicine, vol. 201, no. 8, pp. 1307–1318, 2005.
[53]  D. Park, J. A. Spencer, B. I. Koh et al., “Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration,” Cell Stem Cell, vol. 10, no. 3, pp. 259–272, 2012.
[54]  J. D. Rowley, “A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining,” Nature, vol. 243, no. 5405, pp. 290–293, 1973.
[55]  C. L. Sawyers, “Chronic myeloid leukemia,” New England Journal of Medicine, vol. 340, no. 17, pp. 1330–1340, 1999.
[56]  D. Perrotti, C. Jamieson, J. Goldman, and T. Skorski, “Chronic myeloid leukemia: mechanisms of blastic transformation,” Journal of Clinical Investigation, vol. 120, no. 7, pp. 2254–2264, 2010.
[57]  A. Hochhaus, S. G. O'Brien, F. Guilhot et al., “Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia,” Leukemia, vol. 23, no. 6, pp. 1054–1061, 2009.
[58]  M. S. Holtz, M. L. Slovak, F. Zhang, C. L. Sawyers, S. J. Forman, and R. Bhatia, “Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation,” Blood, vol. 99, no. 10, pp. 3792–3800, 2002.
[59]  A. S. Corbin, A. Agarwal, M. Loriaux, J. Cortes, M. W. Deininger, and B. J. Druker, “Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity,” Journal of Clinical Investigation, vol. 121, no. 1, pp. 396–409, 2011.
[60]  L. J. Elrick, H. G. Jorgensen, J. C. Mountford, and T. L. Holyoake, “Punish the parent not the progeny,” Blood, vol. 105, no. 5, pp. 1862–1866, 2005.
[61]  S. Chu, T. McDonald, A. Lin et al., “Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment,” Blood, vol. 118, no. 20, pp. 5565–5572, 2011.
[62]  T. Skorski, “Chronic myeloid leukemia cells refractory/resistant to tyrosine kinase inhibitors are genetically unstable and may cause relapse and malignant progression to the terminal disease state,” Leukemia and Lymphoma, vol. 52, supplement 1, pp. 23–29, 2011.
[63]  F. X. Mahon, D. Réa, J. Guilhot et al., “Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial,” The Lancet Oncology, vol. 11, no. 11, pp. 1029–1035, 2010.
[64]  J. Cortes, A. Hochhaus, T. Hughes, and H. Kantarjian, “Front-line and salvage therapies with tyrosine kinase inhibitors and other treatments in chronic myeloid leukemia,” Journal of Clinical Oncology, vol. 29, no. 5, pp. 524–531, 2011.
[65]  Y. Wang, A. V. Krivtsov, A. U. Sinha et al., “The wnt/β-catenin pathway is required for the development of leukemia stem cells in AML,” Science, vol. 327, no. 5973, pp. 1650–1653, 2010.
[66]  C. Zhao, A. Chen, C. H. Jamieson et al., “Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia,” Nature, vol. 458, no. 7239, pp. 776–779, 2009.
[67]  T. Suda and F. Arai, “Wnt signaling in the niche,” Cell, vol. 132, no. 5, pp. 729–730, 2008.
[68]  L. Mandal, J. A. Martinez-Agosto, C. J. Evans, V. Hartenstein, and U. Banerjee, “A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors,” Nature, vol. 446, no. 7133, pp. 320–324, 2007.
[69]  F. Ishikawa, S. Yoshida, Y. Saito et al., “Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region,” Nature Biotechnology, vol. 25, no. 11, pp. 1315–1321, 2007.
[70]  D. A. Sipkins, X. Wei, J. W. Wu et al., “In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment,” Nature, vol. 435, no. 7044, pp. 969–973, 2005.
[71]  M. Ninomiya, A. Abe, A. Katsumi et al., “Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice,” Leukemia, vol. 21, no. 1, pp. 136–142, 2007.
[72]  M. H. G. P. Raaijmakers, S. Mukherjee, S. Guo et al., “Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia,” Nature, vol. 464, no. 7290, pp. 852–857, 2010.
[73]  M. Mayerhofer, P. Valent, W. R. Sperr, J. D. Griffin, and C. Sillaber, “BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1α, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin,” Blood, vol. 100, no. 10, pp. 3767–3775, 2002.
[74]  H. Zhang, H. Li, H. S. Xi, and S. Li, “HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells,” Blood, vol. 119, no. 11, pp. 2595–2607, 2012.
[75]  F. Zhao, A. Mancuso, T. V. Bui et al., “Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1α-induced metabolic reprograming,” Oncogene, vol. 29, no. 20, pp. 2962–2972, 2010.
[76]  J. Benito, Y. Shi, B. Szymanska et al., “Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104,” PLoS One, vol. 6, no. 8, Article ID e23108, 2011.
[77]  L. Jin, Y. Tabe, S. Konoplev et al., “CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells,” Molecular Cancer Therapeutics, vol. 7, no. 1, pp. 48–58, 2008.
[78]  Y. Tabe, L. Jin, K. Iwabuchi et al., “Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts,” Leukemia, vol. 26, no. 5, pp. 883–892, 2012.
[79]  E. Weisberg, A. K. Azab, P. W. Manley et al., “Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib,” Leukemia, vol. 26, no. 5, pp. 985–990, 2012.
[80]  M. Yamamoto-Sugitani, J. Kuroda, E. Ashihara et al., “Galectin-3 (Gal-3) induced by leukemia microenvironment promotes drug resistance and bone marrow lodgment in chronic myelogenous leukemia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 42, pp. 17468–17473, 2011.
[81]  A. Colmone, M. Amorim, A. L. Pontier, S. Wang, E. Jablonski, and D. A. Sipkins, “Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells,” Science, vol. 322, no. 5909, pp. 1861–1865, 2008.
[82]  B. Zhang, Y. W. Ho, Q. Huang et al., “Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia,” Cancer Cell, vol. 21, no. 4, pp. 577–592, 2012.
[83]  T. Schmidt, B. K. Masouleh, S. Loges et al., “Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1+ leukemia,” Cancer Cell, vol. 19, no. 6, pp. 740–753, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413