全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Physics Potential of Long-Baseline Experiments

DOI: 10.1155/2014/457803

Full-Text   Cite this paper   Add to My Lib

Abstract:

The discovery of neutrino mixing and oscillations over the past decade provides firm evidence for new physics beyond the Standard Model. Recently, has been determined to be moderately large, quite close to its previous upper bound. This represents a significant milestone in establishing the three-flavor oscillation picture of neutrinos. It has opened up exciting prospects for current and future long-baseline neutrino oscillation experiments towards addressing the remaining fundamental questions, in particular the type of the neutrino mass hierarchy and the possible presence of a CP-violating phase. Another recent and crucial development is the indication of non-maximal 2-3 mixing angle, causing the octant ambiguity of . In this paper, I will review the phenomenology of long-baseline neutrino oscillations with a special emphasis on sub-leading three-flavor effects, which will play a crucial role in resolving these unknowns. First, I will give a brief description of neutrino oscillation phenomenon. Then, I will discuss our present global understanding of the neutrino mass-mixing parameters and will identify the major unknowns in this sector. After that, I will present the physics reach of current generation long-baseline experiments. Finally, I will conclude with a discussion on the physics capabilities of accelerator-driven possible future long-baseline precision oscillation facilities. 1. Introduction and Motivation We are going through an exciting phase when the light of new findings is breaking apart our long-held understanding of the Standard Model of particle physics. This revolution started in part with the widely confirmed claim that neutrinos have mass, and it will continue to be waged by currently running and upcoming neutrino experiments. Over the last fifteen years or so, fantastic data from world-class experiments involving neutrinos from the sun [1–7], the Earth atmosphere [8, 9], nuclear reactors [10–16], and accelerators [17–22] have firmly established the phenomenon of neutrino flavor oscillations [23, 24]. This implies that neutrinos have mass and they mix with each other, providing an exclusive example of experimental evidence for physics beyond the Standard Model. The most recent development in the field of neutrinos is the discovery of the smallest lepton mixing angle . Finally, it has been measured to be nonzero with utmost confidence by the reactor neutrino experiments Daya Bay [13] and RENO [14]. They have found a moderately large value of :? [13],? [14],which is in perfect agreement with the data provided by the another reactor

References

[1]  B. T. Cleveland, T. Daily, R. Davis Jr. et al., “Measurement of the solar electron neutrino flux with the homestake chlorine detector,” Astrophysical Journal Letters, vol. 496, no. 1, pp. 505–526, 1998.
[2]  M. Altmann, M. Balata, P. Belli, et al., “Complete results for five years of GNO solar neutrino observations,” Physics Letters B, vol. 616, no. 3-4, pp. 174–190, 2005.
[3]  J. Hosaka, K. Ishihara1, J. Kameda, et al., “Solar neutrino measurements in Super-Kamiokande-I,” Physical Review D, vol. 73, no. 11, Article ID 112001, 33 pages, 2006.
[4]  Q. Ahmad, R. C. Allen, T. C. Andersen, et al., “Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory,” Phyiscal Review Letters, vol. 89, no. 1, Article ID 011301, 6 pages, 2002.
[5]  B. Aharmim, S. N. Ahmed, J. F. Amsbaugh, et al., “Independent measurement of the total active solar neutrino flux using an array of proportional counters at the Sudbury Neutrino Observatory,” Physical Review Letters, vol. 101, no. 11, Article ID 111301, 5 pages, 2008.
[6]  B. Aharmim, S. N. Ahmed, A. E. Anthony, et al., “Low-energy-threshold analysis of the phase I and phase II data sets of the Sudbury Neutrino Observatory,” Physical Review C, vol. 81, no. 5, Article ID 055504, 49 pages, 2010.
[7]  C. Arpesella, H. O. Back, M. Balata, et al., “Direct measurement of the solar neutrino flux with 192 days of borexino data,” Physical Review Letters, vol. 101, no. 9, Article ID 091302, 6 pages, 2008.
[8]  Y. Fukuda, T. Hayakawa1, E. Ichihara, et al., “Evidence for oscillation of atmospheric neutrinos,” Physical Review Letters, vol. 81, no. 8, pp. 1562–1567, 1998.
[9]  Y. Ashie, J. Hosaka, K. Ishihara, et al., “Measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I,” Physical Review D, vol. 71, no. 11, Article ID 112005, 35 pages, 2005.
[10]  T. Araki, K. Eguchi1, S. Enomoto, et al., “Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion,” Physical Review Letters, vol. 94, no. 8, Article ID 081801, 5 pages, 2005.
[11]  S. Abe, T. Ebihara, S. Enomoto, et al., “Precision measurement of neutrino oscillation parameters with KamLAND,” Physical Review Letters, vol. 100, no. 22, Article ID 221803, 5 pages, 2008.
[12]  F. P. An, J. Z. Bai, A. B. Balantekin, et al., “Observation of electron-antineutrino disappearance at Daya Bay,” Physical Review Letters, vol. 108, no. 17, Article ID 171803, 7 pages, 2012.
[13]  F. P. An, Q. An, J. Z. Bai, et al., “Improved measurement of electron antineutrino disappearance at Daya Bay,” Chinese Physics C, vol. 37, no. 1, Article ID 011001, 2013.
[14]  J. K. Ahn, S. Chebotaryov, J. H. Choi, et al., “Observation of reactor electron antineutrinos disappearance in the RENO experiment,” Physical Review Letters, vol. 108, no. 19, Article ID 191802, 6 pages, 2012.
[15]  Y. Abe, C. Aberle, T. Akiri, et al., “Indication of reactor disappearance in the Double Chooz Experiment,” Physical Review Letters, vol. 108, no. 13, Article ID 131801, 7 pages, 2012.
[16]  Y. Abe, C. Aberle, J. C. Dos Anjos, et al., “Reactor disappearance in the Double Chooz Experiment,” Physical Review D, vol. 86, no. 5, Article ID 052008, 21 pages, 2012.
[17]  M. H. Ahn, E. Aliu, S. Andringa, et al., “Measurement of neutrino oscillation by the K2K experiment,” Physical Review D, vol. 74, no. 7, Article ID 072003, 39 pages, 2006.
[18]  P. Adamson, C. Andreopoulos, K. E. Arms, et al., “Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam,” Physical Review Letters, vol. 101, no. 13, Article ID 131802, 5 pages, 2008.
[19]  P. Adamson, D. J. Auty, D. S. Ayres, et al., “Improved search for muon-neutrino to electron-neutrino oscillations in MINOS,” Physical Review Letters, vol. 107, no. 18, Article ID 181802, 6 pages, 2011.
[20]  P. Adamson, I. Anghel, C. Backhouse, et al., “Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS,” Physical Review Letters, vol. 110, no. 25, Article ID 251801, 6 pages, 2013.
[21]  K. Abe, N. Abgrall, Y. Ajima, et al., “Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam,” Physical Review Letters, vol. 107, no. 4, Article ID 041801, 8 pages, 2011.
[22]  K. Abe, N. Abgrall, H. Aihara, et al., “T2K neutrino flux prediction,” Physical Review D, vol. 87, no. 1, Article ID 012001, 34 pages, 2013.
[23]  B. Pontecorvo, “Neutrino experiments and the problem of conservation of leptonic charge,” Soviet Physics, Journal of Experimental and Theoretical Physics, vol. 26, no. 5, p. 984, 1968.
[24]  V. Gribov and B. Pontecorvo, “Neutrino astronomy and lepton charge,” Physics Letters B, vol. 28, no. 7, pp. 493–496, 1969.
[25]  D. Forero, M. Tortola, and J. Valle, “Global status of neutrino oscillation parameters after Neutrino-2012,” Physical Review D, vol. 86, no. 7, Article ID 073012, 8 pages, 2012.
[26]  G. Fogli, E. Lisi, A. Marrone, et al., “Global analysis of neutrino masses, mixings, and phases: entering the era of leptonic CP violation searches,” Physical Review D, vol. 86, no. 1, Article ID 013012, 10 pages, 2012.
[27]  M. Gonzalez-Garcia, M. Maltoni, J. Salvado, and T. Schwetz, “Global fit to three neutrino mixing: critical look at present precision,” Journal of High Energy Physics, vol. 2012, article 123, 2012.
[28]  X. Qian, R. Rosero, B. Roskovec, et al., “International workshop on neutrino factories, super beams and beta beams,” in Proceedings of the NuFact Conference, Williamsburg, Va, USA, July 2012.
[29]  J. Hewett, H. Weerts, R. Brock, et al., “Fundamental physics at the intensity frontier,” http://arxiv.org/abs/1205.2671.
[30]  H. Minakata, “Phenomenology of future neutrino experiments with large ,” Nuclear Physics B, vol. 235-236, pp. 173–179, 2013.
[31]  P. Machado, H. Minakata, H. Nunokawa, and R. Z. Funchal, “What can we learn about the lepton CP phase in the next 10 years?” http://arxiv.org/abs/1307.3248.
[32]  R. Nichol, T. C. Nicholls, J. P. Ochoa-Ricoux, et al., “New results from MINOS,” Nuclear Physics B, vol. 235-236, pp. 105–111, 2013.
[33]  P. Adamson, I. Anghel, C. Backhouse, et al., “Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS,” Physical Review Letters, vol. 110, no. 25, Article ID 251801, 6 pages, 2013.
[34]  Y. Itow, in Proceedings of the 25th International Conference on Neutrino Physics and Astrophysics (Neutrino '12), Kyoto, Japan, June 2012.
[35]  G. L. Fogli and E. Lisi, “Tests of three-flavor mixing in long-baseline neutrino oscillation experiments,” Physical Review D, vol. 54, no. 5, pp. 3667–3670, 1996.
[36]  V. Barger, D. Marfatia, and K. Whisnant, “Breaking eightfold degeneracies in neutrino CP violation, mixing, and mass hierarchy,” Physical Review D, vol. 65, no. 7, Article ID 073023, 17 pages, 2002.
[37]  H. Minakata, H. Nunokawa, and S. J. Parke, “Parameter degeneracies in neutrino oscillation measurement of leptonic CP and T violation,” Physical Review D, vol. 66, no. 9, Article ID 093012, 15 pages, 2002.
[38]  Y. Itow, “Atmospheric neutrinos: results from running experiments,” in Proceedings of the 25th International Conference on Neutrino Physics and Astrophysics (Neutrino '12), Kyoto, Japan, June 2012.
[39]  H. Minakata and H. Nunokawa, “Exploring neutrino mixing with low energy superbeams,” Journal of High Energy Physics, vol. 2001, no. 10, article 001, 2001.
[40]  S. Pascoli and T. Schwetz, “Prospects for neutrino oscillation physics,” Advances in High Energy Physics, vol. 2013, Article ID 503401, 29 pages, 2013.
[41]  S. K. Agarwalla, S. Prakash, and S. U. Sankar, “Resolving the octant of with T2K and NOvA,” http://xxx.lanl.gov/abs/1301.2574.
[42]  C. H. Albright and M.-C. Chen, “Model predictions for neutrino oscillation parameters,” Physical Review D, vol. 74, no. 11, Article ID 113006, 11 pages, 2006.
[43]  S. Pascoli, S. Petcov, and T. Schwetz, “The absolute neutrino mass scale, neutrino mass spectrum, majorana CP-violation and neutrinoless double-beta decay,” Nuclear Physics B, vol. 734, no. 1-2, pp. 24–49, 2006.
[44]  M. Fukugita and T. Yanagida, “Barygenesis without grand unification,” Physics Letters B, vol. 174, no. 1, pp. 45–47, 1986.
[45]  P. Di Bari, “An introduction to leptogenesis and neutrino properties,” Contemporary Physics, vol. 53, no. 4, pp. 315–338, 2012.
[46]  A. S. Joshipura, E. A. Paschos, and W. Rodejohann, “A simple connection between neutrino oscillation and leptogenesis,” Journal of High Energy Physics, vol. 2001, no. 8, article 029, 2001.
[47]  T. Endoh, S. Kaneko, S. K. Kang, T. Morozumi, and M. Tanimoto, “CP violation in neutrino oscillation and leptogenesis,” Physical Review Letters, vol. 89, no. 23, Article ID 231601, 4 pages, 2002.
[48]  J. C. Pati, “Leptogenesis and neutrino oscillations within a predictive G(224)/SO(10) framework,” Physical Review D, vol. 68, no. 7, Article ID 072002, 11 pages, 2003.
[49]  R. Mohapatra and A. Smirnov, “Neutrino mass and new physics,” Annual Review of Nuclear and Particle Science, vol. 56, pp. 569–628, 2006.
[50]  C. H. Albright, A. Dueck, and W. Rodejohann, “Possible alternatives to tri-bimaximal mixing,” The European Physical Journal C, vol. 70, no. 4, pp. 1099–1110, 2010.
[51]  S. F. King and C. Luhn, “Neutrino mass and mixing with discrete symmetry,” http://xxx.lanl.gov/abs/1301.1340.
[52]  T. Fukuyama and H. Nishiura, “Mass matrix of majorana neutrinos,” http://xxx.lanl.gov/abs/hep-ph/9702253.
[53]  R. N. Mohapatra and S. Nussinov, “Bimaximal neutrino mixing and neutrino mass matrix,” Physical Review D, vol. 60, no. 1, Article ID 013002, 4 pages, 1999.
[54]  C. Lam, “A 2-3 symmetry in neutrino oscillations,” Physics Letters B, vol. 507, no. 1–4, pp. 214–218, 2001.
[55]  P. Harrison and W. Scott, “μ-τ reflection symmetry in lepton mixing and neutrino oscillations,” Physics Letters B, vol. 547, no. 3-4, pp. 219–228, 2002.
[56]  T. Kitabayashi and M. Yasue, “ permutation symmetry for left-handed μ and τ families and neutrino oscillations in an gauge model,” Physical Review D, vol. 67, no. 1, Article ID 015006, 16 pages, 2003.
[57]  W. Grimus and L. Lavoura, “A discrete symmetry group for maximal atmospheric neutrino mixing,” Physics Letters B, vol. 572, no. 3-4, pp. 189–195, 2003.
[58]  Y. Koide, “Universal texture of quark and lepton mass matrices with an extended flavor 2?3 symmetry,” Physical Review D, vol. 69, no. 9, Article ID 093001, 9 pages, 2004.
[59]  R. Mohapatra and W. Rodejohann, “Broken μ-τ symmetry and leptonic CP violation,” Physical Review D, vol. 72, no. 5, Article ID 053001, 7 pages, 2005.
[60]  E. Ma, “Plato's fire and the neutrino mass matrix,” Modern Physics Letters A, vol. 17, no. 36, pp. 2361–2370, 2002.
[61]  E. Ma and G. Rajasekaran, “Softly broken symmetry for nearly degenerate neutrino masses,” Physical Review D, vol. 64, no. 11, Article ID 113012, 5 pages, 2001.
[62]  K. Babu, E. Ma, and J. Valle, “Underlying symmetry for the neutrino mass matrix and the quark mixing matrix,” Physics Letters B, vol. 552, no. 3-4, pp. 207–213, 2003.
[63]  W. Grimus and L. Lavoura, “ model for neutrino mass matrices,” Journal of High Energy Physics, vol. 2005, no. 8, article 013, 2005.
[64]  E. Ma, “Tetrahedral family symmetry and the neutrino mixing matrix,” Modern Physics Letters A, vol. 20, no. 34, pp. 2601–2606, 2005.
[65]  M. Raidal, “Relation between the neutrino and quark mixing angles and grand unification,” Physical Review Letters, vol. 93, no. 16, Article ID 161801, 4 pages, 2004.
[66]  H. Minakata and A. Y. Smirnov, “Neutrino mixing and quark-lepton complementarity,” Physical Review D, vol. 70, no. 7, Article ID 073009, 12 pages, 2004.
[67]  J. Ferrandis and S. Pakvasa, “Quark-lepton complementarity relation and neutrino mass hierarchy,” Physical Review D, vol. 71, no. 3, Article ID 033004, 7 pages, 2005.
[68]  S. Antusch, S. F. King, and R. N. Mohapatra, “Quark-lepton complementarity in unified theories,” Physics Letters B, vol. 618, no. 1–4, pp. 150–161, 2005.
[69]  L. J. Hall, H. Murayama, and N. Weiner, “Neutrino mass anarchy,” Physical Review Letters, vol. 84, no. 12, pp. 2572–2575, 2000.
[70]  A. de Gouvea and H. Murayama, “Neutrino mixing anarchy: alive and kicking,” http://arxiv.org/abs/1204.1249.
[71]  S. K. Agarwalla, S. Prakash, and S. U. Sankar, “Resolving the octant of with T2K and NOvA,” Journal of High Energy Physics, vol. 2013, article 131, 2013.
[72]  S. K. Agarwalla, S. Prakash, S. K. Raut, and S. U. Sankar, “Potential of optimized NOνA for large & combined performance with a LArTPC & T2K,” Journal of High Energy Physics, vol. 2012, article 75, 2012.
[73]  S. K. Agarwalla, “Some aspects of neutrino mixing and oscillations,” http://xxx.lanl.gov/abs/0908.4267.
[74]  S. Bilenky, “Bruno pontecorvo: mister neutrino,” http://arxiv.org/abs/physics/0603039.
[75]  S. Bilenky, “Neutrino,” Physics of Particles and Nuclei, vol. 44, no. 1, pp. 1–46, 2013.
[76]  B. Pontecorvo, “Mesonium and antimesonium,” Soviet Physics, Journal of Experimental and Theoretical Physics, vol. 6, p. 429, 1957.
[77]  B. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge,” Soviet Physics, Journal of Experimental and Theoretical Physics, vol. 7, p. 172, 1958.
[78]  Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles,” Progress of Theoretical Physics, vol. 28, no. 5, pp. 870–880, 1962.
[79]  J. Beringer, J.-F. Arguin, R. M. Barnett, et al., “Review of particle physics,” Physical Review D, vol. 86, no. 1, Article ID 010001, 1528 pages, 2012.
[80]  S. P. Mikheev and A. Y. Smirnov, “Resonance enhancement of oscillations in matter and solar neutrino spectroscopy,” Soviet Journal of Nuclear Physics, vol. 42, pp. 913–917, 1985, Yadernaya Fizika, vol. 42, pp. 1441–1448, 1985.
[81]  S. Mikheev and A. Y. Smirnov, “Resonant amplification of ν oscillations in matter and solar-neutrino spectroscopy,” Il Nuovo Cimento C, vol. 9, no. 1, pp. 17–26, 1986.
[82]  L. Wolfenstein, “Neutrino oscillations in matter,” Physical Review D, vol. 17, no. 9, pp. 2369–2374, 1978.
[83]  L. Wolfenstein, “Neutrino oscillations and stellar collapse,” Physical Review D, vol. 20, no. 10, pp. 2634–2635, 1979.
[84]  A. Osipowicz, H. Blumer, G. Drexlinb, et al., “KATRIN-a next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass,” http://xxx.lanl.gov/abs/hep-ex/0109033.
[85]  I. Avignone, T. Frank, S. R. Elliott, and J. Engel, “Double beta decay, majorana neutrinos, and neutrino mass,” Reviews of Modern Physics, vol. 80, no. 2, pp. 481–516, 2008.
[86]  J. Lesgourgues and S. Pastor, “Neutrino mass from cosmology,” Advances in High Energy Physics, vol. 2012, Article ID 608515, 34 pages, 2012.
[87]  P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al., “Planck 2013 results. XVI. cosmological parameters,” http://arxiv.org/abs/1303.5076.
[88]  T. Mueller, D. Lhuillier, M. Fallot, et al., “Improved predictions of reactor antineutrino spectra,” Physical Review C, vol. 83, no. 5, Article ID 054615, 17 pages, 2011.
[89]  G. Mention, M. Fechner, T. Lasserre, et al., “Reactor antineutrino anomaly,” Physical Review D, vol. 83, no. 7, Article ID 073006, 20 pages, 2011.
[90]  P. Huber, “Determination of antineutrino spectra from nuclear reactors,” Physical Review C, vol. 84, no. 2, Article ID 024617, 16 pages, 2011.
[91]  H. Minakata, H. Sugiyama, O. Yasuda, K. Inoue, and F. Suekane, “Reactor measurement of and its complementarity to long-baseline experiments,” Physical Review D, vol. 68, no. 3, Article ID 033017, 12 pages, 2003.
[92]  P. Huber, M. Lindner, T. Schwetz, and W. Winter, “Reactor neutrino experiments compared to superbeams,” Nuclear Physics B, vol. 665, pp. 487–519, 2003.
[93]  D. Roy, “Determination of the third neutrino-mixing angle and its implications,” Journal of Physics G, vol. 40, no. 5, Article ID 053001, 2013.
[94]  G. Feldman, J. Hartnell, and T. Kobayashi, “Long-baseline neutrino oscillation experiments,” Advances in High Energy Physics, vol. 2013, Article ID 475749, 30 pages, 2013.
[95]  M. Diwan, R. Edgecock, T. Hasegawa, et al., “Future long-baseline neutrino facilities and detectors,” Advances in High Energy Physics, vol. 2013, Article ID 460123, 35 pages, 2013.
[96]  V. Barger, K. Whisnant, S. Pakvasa, and R. J. N. Phillips, “Matter effects on three-neutrino oscillations,” Physical Review D, vol. 22, no. 11, pp. 2718–2726, 1980.
[97]  A. Cervera, A. Doninib, M.B. Gavelab, et al., “Golden measurements at a neutrino factory,” Nuclear Physics B, vol. 597, no. 1-2, pp. 17–55, 2000.
[98]  M. Freund, P. Huber, and M. Lindner, “Systematic exploration of the neutrino factory parameter space including errors and correlations,” Nuclear Physics B, vol. 615, no. 1–3, pp. 331–357, 2001.
[99]  E. K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson, and T. Schwetz, “Series expansions for three-flavor neutrino oscillation probabilities in matter,” Journal of High Energy Physics, vol. 2004, no. 4, article 078, 2004.
[100]  S. K. Agarwalla, T. Li, and A. Rubbia, “An incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline superbeam for large ,” Journal of High Energy Physics, vol. 2012, aricle 154, 2012.
[101]  S. K. Agarwalla, “Neutrino mass hierarchy in future long-baseline experiments,” Nuclear Physics B, vol. 237-238, pp. 196–198, 2013.
[102]  S. Amerio, S. Amorusob, M. Antonello, et al., “Design, construction and tests of the ICARUS T600 detector,” Nuclear Instruments and Methods in Physics Research A, vol. 527, no. 3, pp. 329–410, 2004.
[103]  P. Huber, M. Lindner, and W. Winter, “Superbeams vs. neutrino factories,” Nuclear Physics B, vol. 645, no. 1-2, pp. 3–48, 2002.
[104]  V. Barger, D. Marfatia, and K. Whisnant, “Off-axis beams and detector clusters: resolving neutrino parameter degeneracies,” Physical Review D, vol. 66, no. 5, Article ID 053007, 2002.
[105]  J. Burguet-Castell, M. Gavela, J. Gomez-Cadenas, P. Hernandez, and O. Mena, “Superbeams plus neutrino factory: the golden path to leptonic CP violation,” Nuclear Physics B, vol. 646, no. 1-2, pp. 301–320, 2002.
[106]  V. Barger, D. Marfatia, and K. Whisnant, “How two neutrino superbeam experiments do better than one,” Physics Letters B, vol. 560, no. 1-2, pp. 75–86, 2003.
[107]  P. Huber, M. Lindner, and W. Winter, “Synergies between the first-generation JHF-SK and NuMI superbeam experiments,” Nuclear Physics B, vol. 654, no. 1-2, pp. 3–29, 2003.
[108]  P. Huber and W. Winter, “Neutrino factories and the “magic” baseline,” Physical Review D, vol. 68, no. 3, Article ID 037301, 4 pages, 2003.
[109]  A. Y. Smirnov, “Neutrino oscillations: what is magic about the “magic” baseline?” http://xxx.lanl.gov/abs/hep-ph/0610198.
[110]  India-Based Neutrino Observatory (INO), http://www.ino.tifr.res.in/ino/.
[111]  S. K. Raut, R. S. Singh, and S. U. Sankar, “Magical properties of a 2540?km baseline superbeam experiment,” Physics Letters B, vol. 696, no. 3, pp. 227–231, 2011.
[112]  A. Dighe, S. Goswami, and S. Ray, “2540?km: bimagic baseline for neutrino oscillation parameters,” Physical Review Letters, vol. 105, no. 26, Article ID 261802, 4 pages, 2010.
[113]  A. Takamura and K. Kimura, “Large non-perturbative effects of small and sin on neutrino oscillation and CP violation in matter,” Journal of High Energy Physics, vol. 2006, no. 01, article 053, 2006.
[114]  S. K. Agarwalla, Y. Kao, and T. Takeuchi, “Analytical approximation of the neutrino oscillation probabilities at large ,” http://arxiv.org/abs/1302.6773.
[115]  A. M. Dziewonski and D. L. Anderson, “Preliminary reference Earth model,” Physics of the Earth and Planetary Interiors, vol. 25, no. 4, pp. 297–356, 1981.
[116]  Y. Itow, T. Kajita, and K. Kaneyuki, “The JHF-Kamioka neutrino project,” http://arxiv.org/abs/hep-ex/0106019.
[117]  K. Abe, N. Abgrallp, H. Aihara, et al., “The T2K experiment,” Nuclear Instruments and Methods in Physics Research A, vol. 659, no. 1, pp. 106–135, 2011.
[118]  D. Ayres, G. Drake, M. Goodman, et al., “Letter of intent to build an off-axis detector to study numu to nue oscillations with the NuMI neutrino beam,” http://xxx.lanl.gov/abs/hep-ex/0210005.
[119]  D. S. Ayres, G. R. Drake, M. C. Goodman, et al., “NOvA proposal to build a 30?kiloton off-axis detector to study neutrino oscillations in the fermilab NuMI beamline,” http://xxx.lanl.gov/abs/hep-ex/0503053.
[120]  D. S. Ayres, G. R. Drake, M. C. Goodman, et al., “The NOvA technical design report,” Tech. Rep. FERMILAB-DESIGN-2007-01, 2007.
[121]  S. Prakash, S. K. Raut, and S. U. Sankar, “Getting the best out of T2K and NOνA,” Physical Review D, vol. 86, no. 3, Article ID 033012, 14 pages, 2012.
[122]  M. Diwan, D. Beavis, M.-C. Chen, et al., “Very long baseline neutrino oscillation experiments for precise measurements of mixing parameters and CP violating effects,” Physical Review D, vol. 68, no. 1, Article ID 012002, 10 pages, 2003.
[123]  V. Barger, M. Bishai, D. Bogert, et al., “Report of the US long baseline neutrino experiment study,” http://arxiv.org/abs/0705.4396.
[124]  P. Huber and J. Kopp, “Two experiments for the price of one? the role of the second oscillation maximum in long baseline neutrino experiments,” Journal of High Energy Physics, vol. 2011, article 13, 2011.
[125]  T. Akiri, D. Allspach, M. Andrews, et al., “The 2010 interim report of the long-baseline neutrino experiment collaboration physics working groups,” http://xxx.lanl.gov/abs/1110.6249.
[126]  D. Autiero, J. Aysto, A. Badertscher, et al., “Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects,” Journal of Cosmology and Astroparticle Physics, vol. 2007, article 011, no. 11, 2007.
[127]  A. Rubbia, “A CERN-based high-intensity high-energy proton source for long baseline neutrino oscillation experiments with next-generation large underground detectors for proton decay searches and neutrino physics and astrophysics,” http://xxx.lanl.gov/abs/1003.1921.
[128]  D. Angus, A. Ariga, D. Autiero, et al., “The LAGUNA Design Study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches,” http://xxx.lanl.gov/abs/1001.0077.
[129]  A. Rubbia, “The Laguna design study-towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches,” Acta Physica Polonica B, vol. 41, no. 7, pp. 1727–1732, 2010.
[130]  A. Stahl, C. Wiebusch, A. Guler, M. Kamiscioglu, and R. Sever, “Expression of Interest for a very long baseline neutrino oscillation experiment (LBNO),” Tech. Rep. CERN-SPSC-2012-021, SPSC-EOI-007, 2012.
[131]  A. Para and M. Szleper, “Neutrino oscillations experiments using off-axis NuMI beam,” http://arxiv.org/abs/hep-ex/0110032.
[132]  M. Fechner, Presented on 9 May, 2006.
[133]  P. Huber, M. Lindner, T. Schwetz, and W. Winter, “First hint for CP violation in neutrino oscillations from upcoming superbeam and reactor experiments,” Journal of High Energy Physics, vol. 2009, no. 11, article 044, 2009.
[134]  R. Patterson, “The NOvA experiment: status and outlook,” Nuclear Physics B, vol. 235-236, pp. 151–157, 2013.
[135]  P. Huber, M. Lindner, and W. Winter, “Simulation of long-baseline neutrino oscillation experiments with GLoBES: (General Long Baseline Experiment Simulator),” Computer Physics Communications, vol. 167, no. 3, pp. 195–202, 2005.
[136]  P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter, “New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: (General Long Baseline Experiment Simulator),” Computer Physics Communications, vol. 177, no. 5, pp. 432–438, 2007.
[137]  H. Nunokawa, S. J. Parke, and R. Zukanovich Funchal, “Another possible way to determine the neutrino mass hierarchy,” Physical Review D, vol. 72, no. 1, Article ID 013009, 6 pages, 2005.
[138]  A. de Gouvea, J. Jenkins, and B. Kayser, “Neutrino mass hierarchy, vacuum oscillations, and vanishing ,” Physical Review D, vol. 71, no. 11, Article ID 113009, 13 pages, 2005.
[139]  R. Wendell, “Super-Kamiokande atmospheric neutrino oscillation analysis,” Nuclear Physics B, vol. 237-238, pp. 163–165, 2013.
[140]  R. Wendell, C. Ishihara, K. Abe, et al., “Atmospheric neutrino oscillation analysis with subleading effects in Super-Kamiokande I, II, and III,” vol. 81, no. 9, Article ID 092004, 16 pages, 2010.
[141]  G. Fogli, E. Lisi, A. Marrone, et al., “Solar neutrino oscillation parameters after first KamLAND results,” Physical Review D, vol. 67, no. 7, Article ID 073002, 10 pages, 2003.
[142]  S. K. Agarwalla, P. Huber, J. Tang, and W. Winter, “Optimization of the neutrino factory, revisited,” Journal of High Energy Physics, vol. 2011, article 120, 2011.
[143]  A. Ghosh, T. Thakore, and S. Choubey, “Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments,” Journal of High Energy Physics, vol. 2013, article 9, 2013.
[144]  K. Dick, M. Freund, M. Lindner, and A. Romanino, “CP-violation in neutrino oscillations,” Nuclear Physics B, vol. 562, no. 1-2, pp. 29–56, 1999.
[145]  A. Donini, M. Gavela, P. Hernandez, and S. Rigolin, “Neutrino mixing and CP-violation,” Nuclear Physics B, vol. 574, no. 1-2, pp. 23–42, 2000.
[146]  P. Coloma, P. Huber, J. Kopp, and W. Winter, “Systematic uncertainties in long-baseline neutrino oscillations for large ,” Physical Review D, vol. 87, no. 3, Article ID 033004, 12 pages, 2013.
[147]  P. Adamson, J. Evans, P. Guzowski, et al., “R&D argon detector at Ash River (RADAR)—letter of intent,” http://arxiv.org/abs/1307.6507.
[148]  A. Chatterjee, P. Ghoshal, S. Goswami, and S. K. Raut, “Octant sensitivity for large in atmospheric and long-baseline neutrino experiments,” Journal of High Energy Physics, vol. 2013, article 10, 2013.
[149]  A. Bandyopadhyay, S. Choubey, R. Gandhi, et al., “Physics at a future neutrino factory and super-beam facility,” Reports on Progress in Physics, vol. 72, no. 10, Article ID 106201, 2009.
[150]  S. Choubey, D. Cline, J. Cobb, and P. Coloma, “Interim design report,” http://xxx.lanl.gov/abs/1112.2853.
[151]  P. Coloma, A. Donini, E. Fernandez-Martinez, and P. Hernandez, “Precision on leptonic mixing parameters at future neutrino oscillation experiments,” Journal of High Energy Physics, vol. 2012, article 73, 2012.
[152]  M. Mezzetto and T. Schwetz, “ : phenomenology, present status and prospect,” Journal of Physics G, vol. 37, no. 10, Article ID 103001, 2010.
[153]  P. Huber, M. Lindner, M. Rolinec, and W. Winter, “Optimization of a neutrino factory oscillation experiment,” Physical Review D, vol. 74, no. 7, Article ID 073003, 31 pages, 2006.
[154]  S. K. Agarwalla, S. Choubey, and A. Raychaudhuri, “Neutrino mass hierarchy and with a magic baseline beta-beam experiment,” Nuclear Physics B, vol. 771, no. 1-2, pp. 1–27, 2007.
[155]  S. K. Agarwalla, S. Choubey, A. Raychaudhuri, and W. Winter, “Optimizing the greenfield Beta-beam,” Journal of High Energy Physics, vol. 2008, no. 6, article 090, 2008.
[156]  K. Abe, T. Abe, H. Aihara, et al., “Letter of Intent: the Hyper-Kamiokande experiment—detector design and physics potential,” http://xxx.lanl.gov/abs/1109.3262.
[157]  J.-E. Campagne, M. Maltoni, M. Mezzetto, and T. Schwetz, “Physics potential of the CERN-MEMPHYS neutrino oscillation project,” Journal of High Energy Physics, vol. 2007, no. 4, article 003, 2007.
[158]  L. Agostino, M. Buizza-Avanzini, M. Dracos, et al., “Study of the performance of a large scale water-Cherenkov detector (MEMPHYS),” Journal of Cosmology and Astroparticle Physics, vol. 2013, no. 1, article 024, 2013.
[159]  E. Baussan, J. Bielski, C. Bobeth, et al., “The SPL-based neutrino super beam,” http://arxiv.org/abs/1212.0732.
[160]  T. Edgecock, O. Caretta, T. Davenne, et al., “High intensity neutrino oscillation facilities in Europe,” Physical Review Special Topics, vol. 16, no. 2, Article ID 021002, 18 pages, 2013.
[161]  E. Baussan, M. Dracos, T. Ekelof, E. F. Martinez, and H. Ohman, “The use of a high intensity neutrino beam from the ESS proton linac for measurement of neutrino CP violation and mass hierarchy,” http://arxiv.org/abs/1212.5048.
[162]  E. Baussan, M. Blennow, M. Bogomilov, et al., “A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac: a snowmass 2013 white paper,” http://arxiv.org/abs/1309.7022.
[163]  S. Geer, O. Mena, and S. Pascoli, “A low energy neutrino factory for large ,” Physical Review D, vol. 75, no. 9, Article ID 093001, 13 pages, 2007.
[164]  A. D. Bross, M. Ellis, S. Geer, O. Mena, and S. Pascoli, “Neutrino factory for both large and small ,” Physical Review D, vol. 77, no. 9, Article ID 093012, 12 pages, 2008.
[165]  E. Fernandez Martinez, T. Li, S. Pascoli, and O. Mena, “Improvement of the low energy neutrino factory,” Physical Review D, vol. 81, no. 7, Article ID 073010, 13 pages, 2010.
[166]  P. Ballett and S. Pascoli, “Understanding the performance of the low-energy neutrino factory: the dependence on baseline distance and stored-muon energy,” Physical Review D, vol. 86, no. 5, Article ID 053002, 14 pages, 2012.
[167]  A. Cervera, A. Laing, J. Martin-Albo, and F. Soler, “Performance of the MIND detector at a neutrino factory using realistic muon reconstruction,” Nuclear Instruments and Methods in Physics Research A, vol. 624, no. 3, pp. 601–614, 2010.
[168]  R. Bayes, A. Laing, F. Soler, et al., “Golden channel at a neutrino factory revisited: improved sensitivities from a magnetized iron neutrino detector,” Physical Review D, vol. 86, no. 9, Article ID 093015, 27 pages, 2012.
[169]  P. Zucchelli, “A novel concept for a neutrino factory: the beta-beam,” Physics Letters B, vol. 532, no. 3-4, pp. 166–172, 2002.
[170]  M. Mezzetto, “Physics reach of the beta beam,” Journal of Physics G, vol. 29, no. 8, p. 1771, 2003.
[171]  M. Benedikt, A. Bechtold, F. Borgnolutti, et al., “Conceptual design report for a Beta-Beam facility,” The European Physical Journal A, vol. 47, article 24, 2011.
[172]  M. Bishai, “Private communication,” 2012.
[173]  G. Zeller, “Private communication,” 2012.
[174]  R. Petti and G. Zeller, “Nuclear effects in water vs. argon,” Tech. Rep. 740, LBNE DocDB.
[175]  S. di Luise, “Optimization of neutrino fluxes for future long baseline neutrino experiment,” in Proceedings of the 36th International Conference on High Energy Physics (ICHEP '12), Melbourne, Australia, July 2012.
[176]  A. Rubbia, “Underground neutrino detectors for particle and astroparticle science: the giant liquid argon charge imaging experiment (GLACIER),” Journal of Physics, vol. 171, no. 1, Article ID 012020, 2009.
[177]  S. Geer, “Neutrino beams from muon storage rings: characteristics and physics potential,” Physical Review D, vol. 57, no. 11, pp. 6989–6997, 1998.
[178]  A. De Rujula, M. Gavela, and P. Hernandez, “Neutrino oscillation physics with a neutrino factory,” Nuclear Physics B, vol. 547, no. 1-2, pp. 21–38, 1999.
[179]  C. Volpe, “Beta-beams,” Journal of Physics G, vol. 34, no. 1, article R1, 2007.
[180]  C. Rubbia, A. Ferrari, Y. Kadi, and V. Vlachoudis, “Beam cooling with ionization losses,” Nuclear Instruments and Methods in Physics Research A, vol. 568, no. 2, pp. 475–487, 2006.
[181]  C. Rubbia, “Ionization cooled ultra pure beta-beams for long distance neu-e to neu-mu transitions, phase and CP-violation,” http://arxiv.org/abs/hep-ph/0609235.
[182]  Y. Mori, “Development of FFAG accelerators and their applications for intense secondary particle production,” Nuclear Instruments and Methods in Physics Research A, vol. 562, no. 2, pp. 591–595, 2006.
[183]  S. K. Agarwalla, S. Choubey, and A. Raychaudhuri, “Unraveling neutrino parameters with a magical beta-beam experiment at INO,” Nuclear Physics B, vol. 798, no. 1-2, pp. 124–145, 2008.
[184]  S. K. Agarwalla, S. Choubey, and A. Raychaudhuri, “Exceptional sensitivity to neutrino parameters with a two-baseline Beta-beam set-up,” Nuclear Physics B, vol. 805, no. 1-2, pp. 305–325, 2008.
[185]  P. Coloma, A. Donini, E. Fernández-Martínez, and J. López-Pavón, “ , and the neutrino mass hierarchy at a double baseline Li/B -beam,” Journal of High Energy Physics, vol. 2008, no. 5, article 050, 2008.
[186]  A. Donini and E. Fernandez-Martinez, “Alternating ions in a β-beam to solve degeneracies,” Physics Letters B, vol. 641, no. 6, pp. 432–439, 2006.
[187]  A. Donini, E. Fernandez-Martinez, P. Migliozzi, S. Rigolin, and L. Scotto Lavina, “Study of the eightfold degeneracy with a standard β-beam and a super-beam facility,” Nuclear Physics B, vol. 710, no. 1-2, pp. 402–424, 2005.
[188]  A. Donini, E. Fernández-Martínez, and S. Rigolin, “Appearance and disappearance signals at a β-beam and a super-beam facility,” Physics Letters B, vol. 621, no. 3-4, pp. 276–287, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133