全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computer Breakdown as a Stress Factor during Task Completion under Time Pressure: Identifying Gender Differences Based on Skin Conductance

DOI: 10.1155/2013/420169

Full-Text   Cite this paper   Add to My Lib

Abstract:

In today’s society, as computers, the Internet, and mobile phones pervade almost every corner of life, the impact of Information and Communication Technologies (ICT) on humans is dramatic. The use of ICT, however, may also have a negative side. Human interaction with technology may lead to notable stress perceptions, a phenomenon referred to as technostress. An investigation of the literature reveals that computer users’ gender has largely been ignored in technostress research, treating users as “gender-neutral.” To close this significant research gap, we conducted a laboratory experiment in which we investigated users’ physiological reaction to the malfunctioning of technology. Based on theories which explain that men, in contrast to women, are more sensitive to “achievement stress,” we predicted that male users would exhibit higher levels of stress than women in cases of system breakdown during the execution of a human-computer interaction task under time pressure, if compared to a breakdown situation without time pressure. Using skin conductance as a stress indicator, the hypothesis was confirmed. Thus, this study shows that user gender is crucial to better understanding the influence of stress factors such as computer malfunctions on physiological stress reactions. 1. Introduction Internet World Stats [1] and the International Telecommunication Union [2] indicated in 2012 that of the 7 billion people worldwide, 2.4 billion use the Internet. These two institutions report further impressive numbers, including the fact that 0.7 billion of the 1.8 billion households worldwide have a personal computer, and that there are 6 billion mobile-cellular subscriptions and 1.2 billion mobile Web users. Users of ICT, as well as organizations and society in general, have gained significant benefits through the adoption of technology (e.g., extensive possibilities for communication, increased access to information, and enhancements in productivity). The use of ICT, however, may also have a negative side. Human interaction with technology may lead to notable stress perceptions. This type of stress is referred to as technostress; a phenomenon that has been defined by the psychologist Craig Brod as “a modern disease of adaptation caused by an inability to cope with … computer technologies in a healthy manner” [3, page 16]. Technostress, consequently, is both a psychological and a biological phenomenon. A recent review on the biological effects of technostress indicates that perception of hassles during interaction with ICT (e.g., system breakdown and long and variable

References

[1]  Internet World Stats, http://www.internetworldstats.com/.
[2]  International Telecommunication Union, http://www.itu.int/.
[3]  C. Brod, Technostress: The Human Cost of the Computer Revolution, Addison-Wesley, Reading, Mass, USA, 1984.
[4]  R. Riedl, “On the biology of technostress: literature review and research agenda,” The DATA BASE for Advances in Information Systems, vol. 44, no. 1, pp. 18–55, 2013.
[5]  B. S. McEwen, “Protective and damaging effects of stress mediators: central role of the brain,” Dialogues in Clinical Neuroscience, vol. 8, no. 4, pp. 367–381, 2006.
[6]  B. B. Arnetz and M. Berg, “Melatonin and adrenocorticotropic hormone levels in video display unit workers during work and leisure,” Journal of Occupational and Environmental Medicine, vol. 38, no. 11, pp. 1108–1110, 1996.
[7]  W. Boucsein and M. Thum, “Design of work/rest schedules for computer work based on psychophysiological recovery measures,” International Journal of Industrial Ergonomics, vol. 20, no. 1, pp. 51–57, 1997.
[8]  B. B. Arnetz, “Techno-stress: a prospective psychophysiological study of the impact of a controlled stress-reduction program in advanced telecommunication systems design work,” Journal of Occupational and Environmental Medicine, vol. 38, no. 1, pp. 53–65, 1996.
[9]  L. Cahill, “Why sex matters for neuroscience,” Nature Reviews Neuroscience, vol. 7, no. 6, pp. 477–484, 2006.
[10]  K. P. Cosgrove, C. M. Mazure, and J. K. Staley, “Evolving knowledge of sex differences in brain structure, function, and chemistry,” Biological Psychiatry, vol. 62, no. 8, pp. 847–855, 2007.
[11]  B. M. Kudielka, D. H. Hellhammer, and C. Kirschbaum, “Sex differences in human stress response,” in Encyclopedia of Stress, G. Fink, T. Cox, E. R. de Kloet, et al., Eds., Academic Press, San Diego, Calif, USA, 2000.
[12]  B. M. Kudielka and C. Kirschbaum, “Sex differences in HPA axis responses to stress: a review,” Biological Psychology, vol. 69, no. 1, pp. 113–132, 2005.
[13]  D. Gefen and C. M. Ridings, “If you spoke as she does, sir, instead of the way you do: a sociolinguistics perspective of gender differences in virtual communities,” The DATA BASE for Advances in Information Systems, vol. 36, no. 2, pp. 78–92, 2005.
[14]  D. Gefen and D. W. Straub, “Gender differences in the perception and use of e-mail: an extension to the technology acceptance model,” MIS Quarterly, vol. 21, no. 4, pp. 389–400, 1997.
[15]  V. Venkatesh and M. G. Morris, “Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior,” MIS Quarterly, vol. 24, no. 1, pp. 115–136, 2000.
[16]  A. Broos, “Gender and information and communication technologies (ICT) anxiety: male self-assurance and female hesitation,” Cyberpsychology and Behavior, vol. 8, no. 1, pp. 21–31, 2005.
[17]  B. E. Whitley Jr., “Gender differences in computer-related attitudes and behavior: a meta-analysis,” Computers in Human Behavior, vol. 13, no. 1, pp. 1–22, 1997.
[18]  R. Riedl, M. Hubert, and P. Kenning, “Are there neural gender differences in online trust? An fMRI study on the perceived trustworthiness of eBay offers,” MIS Quarterly, vol. 34, no. 2, pp. 397–428, 2010.
[19]  E. Stenstrom, P. Stenstrom, G. Saad, and S. Cheikhrouhou, “Online hunting and gathering: an evolutionary perspective on sex differences in website preferences and navigation,” IEEE Transactions on Professional Communication, vol. 51, no. 2, pp. 155–168, 2008.
[20]  V. B. Elder, E. P. Gardner, and S. R. Ruth, “Gender and age in technostress: effects on white collar productivity,” Government Finance Review, vol. 3, no. 6, pp. 17–21, 1987.
[21]  M. Tarafdar, Q. Tu, T. S. Ragu-Nathan, and B. S. Ragu-Nathan, “Crossing to the dark side: examining creators, outcomes, and inhibitors of technostress,” Communications of the ACM, vol. 54, no. 9, pp. 113–120, 2011.
[22]  K. Roberts, “Work-life balance—the sources of the contemporary problem and the probable outcomes: a review and interpretation of the evidence,” Employee Relations, vol. 29, no. 4, pp. 334–351, 2007.
[23]  L. R. Stroud, P. Salovey, and E. S. Epel, “Sex differences in stress responses: social rejection versus achievement stress,” Biological Psychiatry, vol. 52, no. 4, pp. 318–327, 2002.
[24]  S. E. Taylor, L. C. Klein, B. P. Lewis, T. L. Gruenewald, R. A. R. Gurung, and J. A. Updegraff, “Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight,” Psychological Review, vol. 107, no. 3, pp. 411–429, 2000.
[25]  R. M. Eisler and J. R. Skidmore, “Masculine gender role stress: scale development and component factors in the appraisal of stressful situations,” Behavior Modification, vol. 11, no. 2, pp. 123–136, 1987.
[26]  B. L. Gillespie and R. M. Eisler, “Development of the feminine gender role stress scale: a cognitive-behavioral measure of stress, appraisal, and coping for women,” Behavior Modification, vol. 16, no. 3, pp. 426–438, 1992.
[27]  A. Campbell, “Sex differences in aggression,” in Oxford Handbook of Evolutionary Psychology, L. Dunbar and L. Barrett, Eds., Oxford University Press, Oxford, UK, 2007.
[28]  C. Tsigos and G. P. Chrousos, “Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress,” Journal of Psychosomatic Research, vol. 53, no. 4, pp. 865–871, 2002.
[29]  S. V. Budaev, “Sex differences in the Big Five personality factors: testing an evolutionary hypothesis,” Personality and Individual Differences, vol. 26, no. 5, pp. 801–813, 1999.
[30]  N. H. Hess and E. H. Hagen, “Sex differences in indirect aggression: psychological evidence from young adults,” Evolution and Human Behavior, vol. 27, no. 3, pp. 231–245, 2006.
[31]  R. S. Lazarus and S. Folkman, Stress, Appraisal, and Coping, Springer, New York, NY, USA, 1984.
[32]  W. Boucsein, Electrodermal Activity, Plenum Press, New York, NY, USA, 1992.
[33]  M. E. Dawson, A. M. Schell, and D. L. Filion, “The electrodermal system,” in Handbook of Psychophysiology, J. T. Cacioppo, L. G. Tassinary, and G. G. Berntson, Eds., Cambridge University Press, Cambridge, UK, 3rd edition, 2007.
[34]  W. Kuhmann, W. Boucsein, F. Schaefer, and J. Alexander, “Experimental investigation of psychophysiological stress-reactions induced by different system response times in human-computer interaction,” Ergonomics, vol. 30, no. 6, pp. 933–943, 1987.
[35]  M. Trimmel, M. Meixner-Pendleton, and S. Haring, “Stress response caused by system response time when searching for information on the internet,” Human Factors, vol. 45, no. 4, pp. 615–621, 2003.
[36]  R. A. Hudiburg, “Psychology of computer use: VII. Measuring technostress: computer-related stress,” Psychological Reports, vol. 64, pp. 767–772, 1989.
[37]  R. A. Huidiburg, “Psychology of computer use: XVII. The computer technology hassles scale: revision, reliability, and some correlates,” Psychological Reports, vol. 65, no. 3, pp. 1387–1394, 1989.
[38]  R. Riedl, H. Kindermann, A. Auinger, and A. Javor, “Technostress from a neurobiological perspective—system breakdown increases the stress hormone cortisol in computer users,” Business & Information Systems Engineering, vol. 4, no. 2, pp. 61–69, 2012.
[39]  J. B. Thatcher and P. L. Perrewé, “An empirical examination of individual traits as antecedents to computer anxiety and computer self-efficacy,” MIS Quarterly, vol. 26, no. 4, pp. 381–396, 2002.
[40]  P. M. Léger, F. D. Davis, J. Perret, and M. Dunaway, Psychophysiological Measures of Cognitive Absorption, SIGHCI 2010 Proceedings, Paper 9, 2010.
[41]  S. Ordaz and B. Luna, “Sex differences in physiological reactivity to acute psychosocial stress in adolescence,” Psychoneuroendocrinology, vol. 37, no. 8, pp. 1135–1157, 2012.
[42]  J. M. Goldstein, M. Jerram, B. Abbs, S. Whitfield-Gabrieli, and N. Makris, “Sex differences in stress response circuitry activation dependent on female hormonal cycle,” Journal of Neuroscience, vol. 30, no. 2, pp. 431–438, 2010.
[43]  M. P. Matud, “Gender differences in stress and coping styles,” Personality and Individual Differences, vol. 37, no. 7, pp. 1401–1415, 2004.
[44]  R. A. Hudiburg and J. R. Necessary, “Coping with computer-stress,” Journal of Educational Computing Research, vol. 15, no. 2, pp. 113–124, 1996.
[45]  M. Tarafdar, Q. Tu, and T. Ragu-Nathan, “Impact of technostress on end-user satisfaction and performance,” Journal of Management Information Systems, vol. 27, no. 3, pp. 303–334, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413