全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of Estimating Equation of Machine Operational Skill by Utilizing Eye Movement Measurement and Analysis of Stress and Fatigue

DOI: 10.1155/2013/515164

Full-Text   Cite this paper   Add to My Lib

Abstract:

For an establishment of a skill evaluation method for human support systems, development of an estimating equation of the machine operational skill is presented. Factors of the eye movement such as frequency, velocity, and moving distance of saccade were computed using the developed eye gaze measurement system, and the eye movement features were determined from these factors. The estimating equation was derived through an outlier test (to eliminate nonstandard data) and a principal component analysis (to find dominant components). Using a cooperative carrying task (cc-task) simulator, the eye movement and operational data of the machine operators were recorded, and effectiveness of the derived estimating equation was investigated. As a result, it was confirmed that the estimating equation was effective strongly against actual simple skill levels ( ). In addition, effects of internal condition such as fatigue and stress on the estimating equation were analyzed. Using heart rate (HR) and coefficient of variation of R-R interval ( ). Correlation analysis between these biosignal indexes and the estimating equation of operational skill found that the equation reflected effects of stress and fatigue, although the equation could estimate the skill level adequately. 1. Introduction With the development of science and technology in several decades, we have had more opportunities to operate various types of machines in our daily life. In order to elicit high performance of such machines, however, the users have to strive for mastery of the operation, and much time and effort are frequently needed. With that in mind, a concept of Human Adaptive Mechatronics (HAM) [1–3], which is an intelligent mechatronics to help the mastery of the user’s operation, was presented. Under the project, various kinds of system design theories and technologies for HAM, that changes its dynamic characteristics and the supporting strategies adaptively to the status of individual user in order to enhance the performance of whole human-machine system, have been studied [4–6]. The following two main functions are required to realize HAM: quantification of skill level of users and adaptive human-assisting mechanism according to the skill level. Researches about the quantification of skills, analyses of vehicle control characteristics of drivers or pilots [7, 8], studies concerning cognitive skill for human-computer interface interaction [9], and researches on perceptual skill on video game [10] are known. On the other hand, in order to design an adaptive human-assisting mechanism, a

References

[1]  K. Furuta, “Control of pendulum: from super mechano-system to human adaptive mechatronics,” in Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 1498–1507, Hawaii, USA, December 2003.
[2]  F. Harashima and S. Suzuki, “Intelligent Mechatronics and Robotics keynote speech,” in Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, in CD-ROM, Hamburg, Germany, 2008.
[3]  S. Suzuki, “Human adaptive mechatronics: skill acquisition in machine manipulation,” IEEE Industrial Electronics Magazine, vol. 4, no. 2, pp. 28–35, 2010.
[4]  S. Suzuki, K. Kurihara, K. Furuta, and F. Harashima, “Assistance control on a haptic system for human adaptive mechatronics,” Advanced Robotics, vol. 20, no. 3, pp. 323–348, 2006.
[5]  K. Furuta, Y. Kado, S. Shiratori, and S. Suzuki, “Assisting control for pendulum-like juggling in human adaptive mechatronics,” Proceedings of the Institution of Mechanical Engineers I, vol. 225, no. 6, pp. 709–720, 2011.
[6]  S. Suzuki and K. Furuta, “Adaptive impedance control to enhance human skill on a haptic interface system,” Journal of Control Science and Engineering, vol. 2012, Article ID 365067, 10 pages, 2012.
[7]  S. Baron, D. L. Kleinman, and W. H. Levison, “An optimal control model of human response part II: prediction of human performance in a complex task,” Automatica, vol. 6, no. 3, pp. 371–383, 1970.
[8]  D. T. McRuer and E. S. Krendel, “Mathematical models of human pilot behavior,” AGARDograph No. 188, NATO Advisory Group for Aerospace Research and Development, 1974.
[9]  W. D. Gray, B. E. John, and M. E. Atwood, “Project ernestine: validating a GOMS analysis for predicting and explaining real-world task performance,” Human-Computer Interaction, vol. 8, no. 3, pp. 237–309, 1993.
[10]  T. Ohno and H. Ogasawara, “Information acquisition model of highly interactive tasks,” in Proceedings of the International Conference on Cognitive Science (ICCS/JCSS '99), pp. 283–293, Tokyo, Japan, 1999.
[11]  M. F. Land and D. N. Lee, “Where we look when we steer,” Nature, vol. 369, no. 6483, pp. 742–744, 1994.
[12]  S. K. Card, T. Moran, and A. Newell, The Psychology of Human-Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1983.
[13]  F. Harashima and S. Suzuki, “Future of mechatronics and human machine operation skill and visual perception,” SICE Journal of Control, Measurement, and System Integration, vol. 1, no. 1, pp. 18–25, 2008.
[14]  S. Suzuki, F. Harashima, and K. Furuta, “Human control law and brain activity of voluntary motion by utilizing a balancing task with an inverted pendulum,” Advances in Human-Computer Interaction, vol. 2010, Article ID 215825, 16 pages, 2010.
[15]  M. S. Bhuiyan, “Driver assistance systems to rate drowsiness: a preliminary study,” Studies in Computational Intelligence, vol. 199, pp. 415–425, 2009.
[16]  A. Yagi, “Variations of the eye fixation related potentials in VDT tasks,” The Japanese Journal of Ergonomics, vol. 35, pp. 522–523, 1999 (Japanese).
[17]  K. Takahashi and H. Inoue, “A quantitative analysis on stress and fatigue for VDT workers measured by Heart Rate Variability (HRV),” Research Report in Faculty of Engineering and Resource Science, no. 30, pp. 1–7, 2009 (Japanese).
[18]  H. Aoki, Y. Fujimoto, S. Suzuki, E. Sato-Shimokawara, and T. Yamaguchi, “Physiological responses on greeting with robot under difference of culture,” Automatic Control of Physiological State and Function, vol. 1, Article ID 235465, 7 pages, 2012.
[19]  S. Suzuki, K. Kuronuma, and F. Harashima, “Development of gaze detection system for multiple users: toward realization of an intelligent service interface,” in Proceedings of the International Joint Conference (ICROS-SICE '09), pp. 3245–3250, Fukuoka, Japan, August 2009.
[20]  H. Igarashi, S. Suzuki, H. Kobayashi, and F. Harashima, “Role sharing analysis on multi-operator cooperative work,” in Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive (RO-MAN '09), pp. 1060–1065, Toyama, Japan, October 2009.
[21]  J. Kolodko, S. Suzuki, and F. Harashima, “Eye-gaze tracking: an approach to pupil tracking targeted to FPGAs,” in Proceedings of the IEEE IRS/RSJ International Conference on Intelligent Robots and Systems (IROS '05), pp. 2942–2947, Alberta, Canada, August 2005.
[22]  T. Miura and K. Shinohara, “Safety problems of the car navigation from the viewpoint of psychology of attention,” IATSS Review, vol. 26, no. 4, pp. 33–44, 2001.
[23]  T. Ohno and H. Ogasawara, “Information Acquisition Model of Highly Interactive Tasks,” in Proceedings of the International Conference on Cognitive Science/Annual Meeting of the Japanese Cognitive Science Society Joint Conference (ICCS/JCSS '99), pp. 288–293, Tokyo, Japan, 1999.
[24]  T. Ito, H. Matsubara, and R. Grimbergen, “Cognitive science approach to Shogi playing processes(1)-some results on memory experiments,” IPSJ, vol. 43, no. 10, pp. 2998–3011, 2002.
[25]  K. Sakita, K. Ogawara, S. Murakami, K. Kawamura, and K. Ikeuchi, “Flexible cooperation between human and robot by interpreting human intention from gaze information,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '04), pp. 846–851, Sendai, Japan, October 2004.
[26]  K. Kuronuma, S. Suzuki, and H. Igarashi, “Estimation method of awareness level using an iconic model for support robots,” in Proceedings of the IFToMM Asian Conference on Mechanism and Machine Science, in CDROM, Taipei, Taiwan, 2010.
[27]  M. Ohsuga, F. Shimono, and H. Genno, “Assessment of phasic work stress using autonomic indices,” International Journal of Psychophysiology, vol. 40, no. 3, pp. 211–220, 2001.
[28]  M. Takeishi and K. Murata, “Evaluation of child neurophysiological function in the environmental epidemiology,” Journal of Clinical and Experimental Medicine, vol. 212, no. 4, pp. 243–246, 2005 (Japanese).
[29]  F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, D. A. Rand and L. -S. Young, Eds., vol. 898 of Lecture Notes in Mathematics, pp. 366–381, Springer, New York, NY, USA, 1981.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413