全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Virtual Sectioning and Haptic Exploration of Volumetric Shapes in the Absence of Visual Feedback

DOI: 10.1155/2013/740324

Full-Text   Cite this paper   Add to My Lib

Abstract:

The reduced behavior for exploration of volumetric data based on the virtual sectioning concept was compared with the free scanning at the use of the StickGrip linkage-free haptic device. Profiles of the virtual surface were simulated through the penholder displacements in relation to the pen tip of the stylus. One or two geometric shapes (cylinder, trapezoidal prism, ball, and torus) or their halves and the ripple surface were explored in the absence of visual feedback. In the free scanning, the person physically moved the stylus. In the parallel scanning, cross-sectional profiles were generated automatically starting from the location indicated by the stylus. Analysis of the performance of 18 subjects demonstrated that the new haptic visualization and exploration technique allowed to create accurate mental images, to recognize and identify virtual shapes. The mean number of errors was about 2.5% in the free scanning mode and 1.9% and 1.5% in the parallel scanning mode at the playback velocity of 28?mm/s and 42?mm/s, respectively. All participants agreed that the haptic visualization of the 3D virtual surface presented as the cross-sectional slices of the workspace was robust and easy to use. The method was developed for visualization of spatially distributed data collected by sensors. 1. Introduction Even in the absence of direct contact and visual feedback, people have to explore physical properties such as friction and roughness, compliance and stiffness of environment (in geophysics and monitoring), and materials (nondestructive testing). Complementing visual information, the existing haptic shape-rendering algorithms focus on rendering the interaction between the tip of a haptic probe and the virtual surface. Using haptic interface and analyzing the effects of different types of the force feedback, the operator of the hand-held detector can feel the change of roughness, rigidity, and other physical properties of a contact. However, human perception of spatially distributed data, for example, the surface topography with varying stiffness, relying on single-point-based exploration techniques often fails to provide a realistic feeling of the complex topological 3D surfaces and intersections [1–7]. Although manual palpation can be very effective, free scanning with a single-point inspection is unnatural and significantly increases the cognitive load to establish the right relations between successive samples of sensory information separated in space and time [8]. Haptic recognition and identification of spatial objects, their unique shape, and

References

[1]  P. Boytchev, T. Chehlarova, and E. Sendova, “Virtual reality vs real virtuality in mathematics teaching and learning,” in Proceedings of the WG 3. 1 & 3. 5 Joint Working Conference Mathematics and ICT: a 'golden triangle' (IMICT '07), D. Benzie and M. Iding, Eds., College of Comp. and Inf. Science Northeastern University, Boston, Mass, USA, 2007.
[2]  K. Kahol and S. Panchanathan, “Distal object perception through haptic user interfaces for individuals who are blind,” in Newsletter ACM SIGACCESS Accessibility and Computing, no. 84, pp. 30–33, ACM, New York, NY, USA, 2006.
[3]  H. H. King, R. Donlin, and B. Hannaford, “Perceptual thresholds for single vs. multi-finger haptic interaction,” in Proceedings of the IEEE Haptics Symposium (HAPTICS '10), pp. 95–99, IEEE Haptics Symposium, Washington, DC, USA, March 2010.
[4]  Y. Liu and S. D. Laycock, “A haptic system for drilling into volume data with polygonal tools,” in Proceedings of the Eurographics Association, W. Tang and J. P. Collomosse, Eds., pp. 1–8, EG UK Theory and Practice of Computer Graphics, Cardiff University, 2009.
[5]  N. Magnenat-Thalmann and U. Bonanni, “Haptics in virtual reality and multimedia,” IEEE Multimedia, vol. 13, no. 3, pp. 6–11, 2006.
[6]  S. Mayank, Implementation and evaluation of a multiple-points haptic rendering algorithm [M.S. thesis], the Russ College of Engineering and Technology of Ohio University, 2007.
[7]  W. Yu, R. Ramloll, and S. Brewster, “Haptic graphs for blind computer users,” in Haptic Human-Computer Interaction, S. A. Brewster and R. Murray-Smith, Eds., pp. 41–51, Springer, Berlin, Germany, 2001.
[8]  M. W. A. Wijntjes, T. van Lienen, I. M. Verstijnen, and A. M. L. Kappers, “Look what I have felt: Unidentified haptic line drawings are identified after sketching,” Acta Psychologica, vol. 128, no. 2, pp. 255–263, 2008.
[9]  G. Jansson and K. Billberger, “The PHANToM used without visual guidance,” in Proceedings of the 1st Phantom Users Research Symposium (PURS '99), pp. 27–30, Heidelberg, Germany, 1999.
[10]  J. F. Santore and S. C. Shapiro, “Identifying an object that is perceptually indistinguishable from one previously perceived,” in Proceedingsof the 19th National Conference on Artificial Intelligence (AAAI '04), pp. 968–969, The MIT Press, July 2004.
[11]  A. Withana, Y. Makino, M. Kondo, M. Sugimoto, G. Kakehi, and M. Inami, “Impact: Immersive haptic stylus to enable direct touch and manipulation for surface computing,” Computers in Entertainment, vol. 8, no. 2, article 9, 2010.
[12]  H. Yano, M. Nudejima, and H. Iwata, “Development of haptic rendering methods of rigidity distribution for tool-handling type haptic interface,” in Proceedings of the Eurohaptics Conference- 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC '05), pp. 569–570, 2005.
[13]  H. Z. Tan, M. A. Srinivasan, C. M. Reed, and N. I. Durlach, “Discrimination and identification of finger joint-angle position using active motion,” ACM Transactions on Applied Perception, vol. 4, no. 2, pp. 1–14, 2007.
[14]  G. von Békésy, Sensory Inhibition, Princeton University Press, 1967.
[15]  F. Vega-Bermudez and K. O. Johnson, “Surround suppression in the responses of primate SA1 and RA mechanoreceptive afferents mapped with a probe array,” Journal of Neurophysiology, vol. 81, no. 6, pp. 2711–2719, 1999.
[16]  R. L. Klatzky, S. J. Lederman, and J. M. Mankinen, “Visual and haptic exploratory procedures in children's judgments about tool function,” Infant Behavior and Development, vol. 28, no. 3, pp. 240–249, 2005.
[17]  T. V. Evreinova, G. Evreinov, and R. Raisamo, “Interpretation of Ambiguous Images Inspected by the StickGrip Device,” in Proceedings of the IADIS International Conference on Interfaces and Human Computer Interaction (IADIS IHCI '11), pp. 209–217, 2011.
[18]  T. V. Evreinova, G. Evreinov, and R. Raisamo, “Estimating topographic heights with the StickGrip haptic device,” in Proceedings of the International Symposium on Multimedia Applications and Processing (MMAP '11), pp. 691–697, September 2011.
[19]  T. V. Evreinova, G. Evreinov, and R. Raisamo, “Haptic visualization of bathymetric data, a case study,” in Proceedings of the Haptic Symposium (Haptics '12), pp. 359–364, 2012.
[20]  T. V. Evreinova, G. Evreinov, and R. Raisamo, “Evaluation of effectiveness of the StickGrip device for detecting the topographic heights on digital maps,” International Journal of Computer Science and Application, vol. 9, no. 3, pp. 61–76, 2012.
[21]  P. Roth, L. Petnicci, and T. Pun, “From dots to shapes: an auditory haptic game platform for teaching geometry to blind pupils,” in Proceedings of the 7th International Conference on Computers Helping People with Special Needs (ICCHP '00), pp. 603–610, 2000.
[22]  G. Evreinov and R. Raisamo, “An evaluation of three sound mappings through the localization behavior of the eyes,” in Proceedings of the 22nd International Conference on Virtual, Synthetic and Entertainment Audio (AES '02), pp. 239–248, New York, NY, USA, 2002.
[23]  P. B. L. Meijer, “An experimental system for auditory image representations,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 2, pp. 112–121, 1992.
[24]  S. Rouzier, B. Hennion, T. P. Segovia, and D. Chêne, “Touching geometry for visually impaired pupils,” in Proceedings of EuroHaptics, pp. 104–109, 2004.
[25]  N. Gronau, M. Neta, and M. Bar, “Integrated contextual representation for objects' identities and their locations,” Journal of Cognitive Neuroscience, vol. 20, no. 3, pp. 371–388, 2008.
[26]  A. Theurel, S. Frileux, Y. Hatwell, and E. Gentaz, “The haptic recognition of geometrical shapes in congenitally blind and blindfolded adolescents: is there a haptic prototype effect,” PLoS ONE, vol. 7, no. 6, Article ID e40251, 2012.
[27]  I. Biederman, “Recognition-by-components: a theory of human image understanding,” Psychological Review, vol. 94, no. 2, pp. 115–147, 1987.
[28]  K. E. Overvliet, J. B. J. Smeets, and E. Brenner, “The use of proprioception and tactile information in haptic search,” Acta Psychologica, vol. 129, no. 1, pp. 83–90, 2008.
[29]  M. Singh, “Modal and amodal completion generate different shapes,” Psychological Science, vol. 15, no. 7, pp. 454–459, 2004.
[30]  S. Ullman, “The visual analysis of shape and form,” in The Cognitive Neurosciences, M. S. Gazzaniga and E. Bizzi, Eds., pp. 339–350, MIT Press, Cambridge, Mass, USA, 1995.
[31]  J. Voisin, G. Benoit, and E. C. Chapman, “Haptic discrimination of object shape in humans: two-dimensional angle discrimination,” Experimental Brain Research, vol. 145, no. 2, pp. 239–250, 2002.
[32]  B. Wu, R. L. Klatzky, and G. D. Stetten, “Mental visualization of objects from cross-sectional images,” Cognition, vol. 123, no. 1, pp. 33–49, 2012.
[33]  E. Foulke and J. S. Warm, “Effects of complexity and redundancy on the tactual recognition on metric figures,” Perceptual and Motor Skills, vol. 25, no. 1, pp. 177–187, 1967.
[34]  A. M. Kappers, J. J. Koenderink, and I. Lichtenegger, “Haptic identification of curved surfaces,” Perception and Psychophysics, vol. 56, no. 1, pp. 53–61, 1994.
[35]  K. van den Doel, D. Smilek, A. Bodnar et al., “Geometric shape detection with soundview,” in Proceedings of the 10th Meeting of the International Conference on Auditory Display (ICAD '04), vol. 47, no. 5, pp. 1–8, 2004.
[36]  T. V. Evreinova, G. Evreinov, and R. Raisamo, “An evaluation of the virtual curvature with the StickGrip haptic device: a case study,” Universal Access in the Information Society, vol. 12, no. 2, pp. 161–173, 2013.
[37]  J. J. Koenderink and A. J. van Doorn, “Surface shape and curvature scales,” Image and Vision Computing, vol. 10, no. 8, pp. 557–564, 1992.
[38]  A. Pichler, R. B. Fisher, and M. Vincze, “Decomposition of range images using markov random fields,” in Proceedings of the 11th International Conference on Image Processing (ICIP '04), pp. 1205–1208, IEEE Computer Society Press, October 2004.
[39]  G. Taylor and L. Kleeman, “Robust range data segmentation using geometric primitives for robotic applications,” in Proceedings of the 9th International Conference on Signal and Image Processing (IASTED '03), pp. 467–472, ACTA Press, August 2003.
[40]  D. Weinshall, “Shortcuts in shape classification from two images,” CVGIP, vol. 56, no. 1, pp. 57–68, 1992.
[41]  A. G. Metec, http://www.metec-ag.de/, 2013.
[42]  E. Lecolinet and G. Mouret, “TACTIBALL,TACTIPEN,TACTITAB Ou comment “toucher du doigt ” les données de son ordinateur,” in Proceedings of the 17th international conference on Francophone sur l'Interaction Homme-Machine (IHM '05), pp. 227–230, ACM, New York, NY, USA, 2005.
[43]  N. Noble and B. Martin, “Shape discovering using tactile guidance,” in Proceedings of EuroHaptics (EH '06), pp. 561–564, 2006.
[44]  T. Pietrzak, A. Crossan, S. A. Brewster, B. Martin, and I. Pecci, “Exploring geometric shapes with touch,” in Proceedings of the 12th IFIP TC 13 International Conference on Human-Computer Interaction (INTERACT '09), pp. 145–148, Springer, Berlin, Germany, 2009.
[45]  M. Ziat, O. Gapenne, J. Stewart, and C. Lenay, “Haptic recognition of shapes at different scales: a comparison of two methods of interaction,” Interacting with Computers, vol. 19, no. 1, pp. 121–132, 2007.
[46]  J. S. Chan, T. Maucher, J. Schemmel, D. Kilroy, F. N. Newell, and K. Meier, “The virtual haptic display: a device for exploring 2-D virtual shapes in the tactile modality,” Behavior Research Methods, vol. 39, no. 4, pp. 802–810, 2007.
[47]  M. Stamm, M. E. Altinsoy, and S. Merchel, “Identification accuracy and efficiency of haptic virtual objects using force-feedback,” in Proceedings of the 3rd International Workshop on Perceptual Quality of System (PQS '10), 2010.
[48]  K. U. Kyung, H. Choi, D. S. Kwon, and S. W. Son, “Interactive mouse systems providing haptic feedback during the exploration in virtual environment,” in Proceedings of the 19th International Symposium (ISCIS '04), pp. 136–146, Springer, 2004.
[49]  G. Jansson and K. Larsson, “Identification of haptic virtual objects with different degrees of complexity,” in Proceedings of Eurohaptics 2002 (EH '02), pp. 57–60, University of Edinburgh, Edinburgh, UK, 2002.
[50]  S. Kelter, H. Gr?tzbach, R. Freiheit, B. H?hle, S. Wutzig, and E. Diesch, “Object identification: the mental representation of physical and conceptual attributes,” Memory and Cognition, vol. 12, no. 2, pp. 123–133, 1984.
[51]  M. A. Symmons, B. L. Richardson, and D. B. Wuillemin, “Components of haptic information: skin rivals kinaesthesis,” Perception, vol. 37, no. 10, pp. 1596–1604, 2008.
[52]  H. Bértolo, “Visual imagery without visual perception,” Psicológica, vol. 26, no. 1, pp. 173–188, 2005.
[53]  G. Evreinov, T. V. Evreinova, and R. Raisamo, “Method, computer program and device for interacting with a computer,” Finland Patent Application, G06F ID, 20090434, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413