全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review of Mobile Robotic Telepresence

DOI: 10.1155/2013/902316

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mobile robotic telepresence (MRP) systems incorporate video conferencing equipment onto mobile robot devices which can be steered from remote locations. These systems, which are primarily used in the context of promoting social interaction between people, are becoming increasingly popular within certain application domains such as health care environments, independent living for the elderly, and office environments. In this paper, an overview of the various systems, application areas, and challenges found in the literature concerning mobile robotic telepresence is provided. The survey also proposes a set terminology for the field as there is currently a lack of standard terms for the different concepts related to MRP systems. Further, this paper provides an outlook on the various research directions for developing and enhancing mobile robotic telepresence systems per se, as well as evaluating the interaction in laboratory and field settings. Finally, the survey outlines a number of design implications for the future of mobile robotic telepresence systems for social interaction. 1. Introduction Telepresence [1] is about the sense of being in another environment. In particular, robotic telepresence offers the means to connect to a remote location via traditional telepresence with the added value of moving and actuating in that location. A facet of robotic telepresence is social robotic telepresence where the primary aim of the system is to foster a social interaction between individuals. In this paper, we provide the first literature review of a subset of social robotic telepresence systems whose focus is on mobility. Such systems concentrate primarily on enabling social interaction via a video conferencing system with the added functionalities of moving/steering the system to various locations. Adopted from [2, 3], we refer to this subset of social robotic telepresence devices as mobile robotic telepresence (MRP) systems. Typical MRP systems are characterized by an LCD screen, a web camera, a microphone, and speakers allowing communication between two parties. The units can be moved around by a user who is not situated at the robot site. Today, the field of mobile robotic telepresence is in rapid expansion, with an increasing amount of commercial systems available and research efforts in the field [4–6]. The published research spans from issues on navigation and immersion to evaluations in office and health care environments. So far, however, there is a lack of a comprehensive review of MRP systems in the literature, and the primary aim of this work is

References

[1]  M. Minsky, Telepresence, OMNI Magazine, 1980.
[2]  J. M. Beer and L. Takayama, “Mobile remote presence systems for older adults: acceptance, benefits, and concerns,” in Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI '11), pp. 19–26, March 2011.
[3]  M. K. Lee and L. Takayama, ““Now, I have a body”: uses and social norms for mobile remote presence in the workplace,” in Proceedings of the 29th Annual CHI Conference on Human Factors in Computing Systems (CHI '11), pp. 33–42, May 2011.
[4]  ExCITE Project, “ExCITE,” August 2012, http://www.excite-project.eu.
[5]  Social Robotic Telepresence, “HRI, 2011 Workshop,” August 2012, http://aass.oru.se/~ali/hri2011ws/.
[6]  Social Robotic Telepresence, “Ro-Man 2012 Workshop,” August 2012, http://aass.oru.se/~ali/srt2012/.
[7]  E. Paulos and J. Canny, “Designing personal tele-embodiment,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '98), pp. 3173–3178, May 1998.
[8]  E. Paulos and J. Canny, “Social tele-embodiment: understanding presence,” Autonomous Robots, vol. 11, no. 1, pp. 87–95, 2001.
[9]  Giraff Technologies AB, “Giraff,” August 2012, http://www.giraff.org.
[10]  Anybots, “QB,” August 2012, http://anybots.com.
[11]  M. Gibstein, “CES coverage anybots QB telepresence robot hands on,” Tech Tracker Tracking Today’s Tech, January 12 2011, http://techtrackr.com/2011/01/12/ces-coverage-anybots-qb-telepresence-robot-hands-on/.
[12]  Willow Garage, “Texai,” August 2012, http://www.willowgarage.com/pages/texai.
[13]  ROS.org, “ROS,” August 2012, http://ros.org.
[14]  Suitable Technologies, “Suitable Technologies,” August 2012, http://suitabletech.com.
[15]  VGo Communications, “VGo,” August 2012, http://www.vgo.com.
[16]  Ryerson University, “PEBBLES,” August 2012, http://www.ryerson.ca/pebbles/.
[17]  K. M. Tsui, M. Desai, H. A. Yanco, and C. Uhlik, “Exploring use cases for telepresence robots,” in Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI '11), pp. 11–18, March 2011.
[18]  VGo Communications, “VGo User Guide v. 1. 5. 0,” August 2012, http://www.vgocom.com/sites/default/files/vgo_user_guide_v1. 5. 0.pdf.
[19]  Mantaro, “MantaroBot,” August 2012, http://mantarobot.com.
[20]  Double, “Double Robotics,” December 2012, http://www.doublerobotics.com/.
[21]  mObi, “Bossa Nova Robotics,” December 2012, http://www.bnrobotics.com/mobi/.
[22]  Gostai, “Jazz Connect,” August 2012, http://gostai.com.
[23]  Urbiforge.org, “UrbiForge,” December 2012, http://www.urbiforge.org.
[24]  iRobot Corporation, “iRobot Ava,” August 2012, http://www.irobot.com/ava.
[25]  9thSense, “Telo and Helo,” August 2012, http://9thsense.com/.
[26]  InTouch Health, “RP-7,” August 2012, http://intouchhealth.com.
[27]  InTouch Health, “FAQ RP-7,” August 2012, http://www.intouchhealth.com/ITHFAQs.pdf.
[28]  S. O. Adalgeirsson and C. Breazeal, “MeBot: a robotic platform for socially embodied presence,” in Proceedings of the 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI '10), pp. 15–22, Osaka, Japan, March 2010.
[29]  D. Sakamoto, T. Kanda, T. Ono, H. Ishiguro, and N. Hagita, “Android as a telecommunication medium with a human-like presence,” in Proceedings of the ACM/IEEE Conference on Human-Robot Interaction (HRI '07), pp. 193–200, March 2007.
[30]  K. Ogawa, S. Nishio, K. Koda, G. Balistreri, T. Watanabe, and H. Ishiguro, “Exploring the natural reaction of young and aged person with Telenoid in a real world,” Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 15, no. 5, pp. 592–597, 2011.
[31]  R. Yamazaki, S. Nishio, K. Ogawa et al., “How does telenoid affect the communication between children in classroom setting?” in Proceedings of the 30th Annual CHI Conference on Human Factors in Computing Systems (CHI '12), pp. 351–366, May 2012.
[32]  H. Tobita, S. Maruyama, and T. Kuji, “Floating avatar: telepresence system using blimps for communication and entertainment,” in Proceedings of the 29th Annual CHI Conference on Human Factors in Computing Systems (CHI '11), pp. 541–550, May 2011.
[33]  J. M. Lu, C. Lu, Y. Chen, J. Wang, and Y. Hsu, “Tricmini—a telepresence robot towards enriched quality of life of the elderly,” in Proceedings of the Asia Pacific eCare and TeleCare Congress, 2011.
[34]  A. Helal and B. Abdulrazak, “Tecarob: tele-care using telepresence and robotic technology for assisting people with special needs,” International Journal of ARM, vol. 7, no. 3, pp. 46–53, 2006.
[35]  R. S. Fish, R. Kraut, and R. W. Root, “Evaluating video as a technology for informal communication,” in Proceedings of the 10th Annual CHI Conference on Human Factors in Computing Systems (CHI '92), pp. 37–48, 1992.
[36]  P. J. Hinds and M. Mortensen, “Understanding conflict in geographically distributed teams: the moderating effects of shared identity, shared context, and spontaneous communication,” Organization Science, vol. 16, no. 3, pp. 290–307, 2005.
[37]  S. Wjittaker, D. Frohlich, and O. Daly-Jones, “Informal workplace communication: what is ti like and how might we support it?” in Proceedings of the 12th Annual CHI Conference on Human Factors in Computing Systems (CHI '94), pp. 131–137, April 1994.
[38]  N. P. Jouppi, “First steps towards mutually-immersive mobile telepresence,” in Proceedings of the 8th Conference on Computer Supported Cooperative Work (CSCW '02), pp. 354–363, November 2002.
[39]  N. P. Jouppi, S. Iyer, S. Thomas, and A. Slayden, “BiReality: mutually-lmmersive Telepresence,” in Proceedings of the 12th ACM International Conference on Multimedia, pp. 860–867, October 2004.
[40]  N. P. Jouppi and S. Thomas, “Telepresence systems with automatic preservation of user head height, local rotation, and remote translation,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '05), pp. 62–68, April 2005.
[41]  M. Desai, K. M. Tsui, H. A. Yanco, and C. Uhlik, “Essential features of telepresence robots,” in Proceedings of the IEEE International Conference on Technologies for Practical Robot Applications (TePRA '11), pp. 15–20, April 2011.
[42]  E. Guizzo, “When my Avatar went to work,” IEEE Spectrum, vol. 47, no. 9, pp. 26–50, 2010.
[43]  L. Takayama and J. Go, “Mixing metaphors in mobile remote presence,” in Proceedings of the Conference on Computer Supported Cooperative Work (CSCW '12), pp. 495–504, 2012.
[44]  A. Paepcke, B. Soto, L. Takayama, F. Koenig, and B. Gassend, “Yelling in the hall: using sidetone to address a problem with mobile remote presence systems,” in Proceedings of the Symposium on User Interface Software and Technology, pp. 107–116, 2011.
[45]  T. Mizumoto, K. Nakadai, T. Yoshida et al., “Design and implementation of selectable sound separation on the Texai telepresence system using hark,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '11), pp. 2130–2137, 2011.
[46]  L. M. Ellison, M. Nguyen, M. D. Fabrizio, A. Soh, S. Permpongkosol, and L. R. Kavoussi, “Postoperative robotic telerounding: a multicenter randomized assessment of patient outcomes and satisfaction,” Archives of Surgery, vol. 142, no. 12, pp. 1177–1181, 2007.
[47]  L. M. Ellison, P. A. Pinto, F. Kim et al., “Telerounding and patient satisfaction after surgery,” Journal of the American College of Surgeons, vol. 199, no. 4, pp. 523–530, 2004.
[48]  A. Gandsas, M. Parekh, M. M. Bleech, and D. A. Tong, “Robotic telepresence: profit analysis in reducing length of stay after laparoscopic gastric bypass,” Journal of the American College of Surgeons, vol. 205, no. 1, pp. 72–77, 2007.
[49]  Z. J. Daruwalla, D. R. Collins, and D. P. Moore, ““Orthobot, to your station!” The application of the remote presence robotic system in orthopaedic surgery in Ireland: a pilot study on patient and nursing staff satisfaction,” Journal of Robotic Surgery, vol. 4, no. 3, pp. 177–182, 2010.
[50]  J. B. Petelin, M. E. Nelson, and J. Goodman, “Deployment and early experience with remote-presence patient care in a community hospital,” Surgical Endoscopy and Other Interventional Techniques, vol. 21, no. 1, pp. 53–56, 2007.
[51]  P. M. Vespa, “Multimodality monitoring and telemonitoring in neurocritical care: from microdialysis to robotic telepresence,” Current Opinion in Critical Care, vol. 11, no. 2, pp. 133–138, 2005.
[52]  P. Vespa, “Robotic telepresence in the intensive care unit,” Critical Care, vol. 9, no. 4, pp. 319–320, 2005.
[53]  P. M. Vespa, C. Miller, X. Hu, V. Nenov, F. Buxey, and N. A. Martin, “Intensive care unit robotic telepresence facilitates rapid physician response to unstable patients and decreased cost in neurointensive care,” Surgical Neurology, vol. 67, no. 4, pp. 331–337, 2007.
[54]  Y. Wang, F. Lai, and P. Vespa, “Enabling technologies facilitate new healthcare delivery models for acute stroke,” Stroke, vol. 41, no. 6, pp. 1076–1078, 2010.
[55]  K. K. Chung, K. W. Grathwohl, R. K. Poropatich, S. E. Wolf, and J. B. Holcomb, “Robotic telepresence: past, present, and future,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 21, no. 4, pp. 593–596, 2007.
[56]  J. F. Sucher, S. R. Todd, S. L. Jones, T. Throckmorton, K. L. Turner, and F. A. Moore, “Robotic telepresence: a helpful adjunct that is viewed favorably by critically ill surgical patients,” The American Journal of Surgery, vol. 202, no. 6, pp. 843–847, 2011.
[57]  C. D. Smith and J. E. Skandalakis, “Remote presence proctoring by using a wireless remote-control videoconferencing system,” Surgical Innovation, vol. 12, no. 2, pp. 139–143, 2005.
[58]  R. Agarwal, A. W. Levinson, M. Allaf, D. Markov, A. Nason, and L. M. Su, “The roboConsultant: telementoring and remote presence in the operating room during minimally invasive urologic surgeries using a novel mobile robotic interface,” Urology, vol. 70, no. 5, pp. 970–974, 2007.
[59]  M. Iftikhar, M. J. Majid, M. Muralindran, G. Thayabaren, R. Vigneswaran, and T. T. K. Brendan, “OTOROB: robot for orthopaedic surgeon roboscope: non-interventional medical robot for telerounding,” in Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering (iCBBE '11), May 2011.
[60]  D. Sampsel, G. Bharwani, D. Mehling, and D. Smith, “Robots as faculty: student and faculty perceptions,” Clinical Simulation in Nursing, vol. 7, no. 6, pp. 209–218, 2011.
[61]  J. Fitzgerald, “After surgery, a robot may be at your side in quest for efficiency, savings, hospital is testing at-home mechanical monitors,” Globe Correspondent, December 2011, http://www.highbeam.com/doc/1P2-30289248.html.
[62]  S. Coradeschi, “GIRAFFPLUS: combining social interaction and long term monitoring for promoting independent living,” in Proceedings of the Medicinteknikdagarna, 2012.
[63]  D. Labonte, F. Michaud, P. Boissy, H. Corriveau, R. Cloutier, and M. A. Roux, “A pilot study on teleoperated mobile robots in home environments,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 4466–4471, October 2006.
[64]  F. Michaud, P. Boissy, D. Labonté et al., “Remote assistance in caregiving using telerobot,” in Proceedings of the International Conference on Technology & Aging, 2007.
[65]  F. Michaud, P. Boissy, D. Labonté et al., “A telementoring robot for home care,” in Proceedings of the International Conference on Technology & Aging, A. Mihailidis, A. Boger, H. Kautz, and L. Normie, Eds., vol. 21 of Assistive Technology Research Series, pp. 138–145, IOS Press, Amsterdam, Netherlands, 2008.
[66]  D. Labonte, P. Boissy, and F. Michaud, “Comparative analysis of 3-D robot teleoperation interfaces with novice users,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 40, no. 5, pp. 1331–1342, 2010.
[67]  F. Michaud, P. Boissy, D. Labonté et al., “Exploratory design and evaluation of a homecare teleassistive mobile robotic system,” Mechatronics, vol. 20, no. 7, pp. 751–766, 2010.
[68]  P. Boissy, S. Brière, H. Corriveau, A. Grant, M. Lauria, and F. Michaud, “Usability testing of a mobile robotic system for in-home telerehabilitation,” in Proceedings of the International Conference on Engineering in Medicine and Biology Society (EMBC'11), pp. 1839–1842, 2011.
[69]  H. Eftring, The Useworthiness of Robots for People with Physical Disabilities [doctoral dissertation], 1999.
[70]  S. Coradeschi, A. Loutfi, A. Kristoffersson et al., “Towards a methodology for longitudinal evaluation of social robotic telepresence for elderly,” in Proceedings of the HRI Workshop on Social Robotics Telepresence, pp. 1–7, 2011.
[71]  P. Deegan, R. Grupen, A. Hanson et al., “Mobile manipulators for assisted living in residential settings,” Autonomous Robots, vol. 24, no. 2, pp. 179–192, 2008.
[72]  A. Kristoffersson, S. Coradeschi, A. Loutfi, and K. Severinson Eklundh, “Towards evaluation of social robotic telepresence based on measures of social and spatial presence,” in Proceedings of the HRI Workshop on Social Robotic Telepresence, pp. 43–49, 2011.
[73]  A. Kristoffersson, S. Coradeschi, A. Loutfi, and K. Severinson-Eklundh, “An Exploratory Study of Health Professionals' attitudes about robotic telepresence technology,” Journal of Technology in Human Services, vol. 29, no. 4, pp. 263–283, 2011.
[74]  L. Tiberio, L. Padua, A. R. Pellegrino, I. Aprile, G. Cortellessa, and A. Cesta, “Assessing the tolerance of a telepresence robot in users with mild cognitive impairment—a protocol for studying user’s physiological response,” in Proceedings of the HRI Workshop on Social Robotic Telepresence, pp. 23–28, 2011.
[75]  A. Kristoffersson, K. Severinson Eklundh, and A. Loutfi, “Measuring the quality of interaction in mobile robotic telepresence a pilot’s perspective,” International Journal of Social Robotics, vol. 5, no. 1, pp. 89–101, 2013.
[76]  A. Kristoffersson, K. Severinson Eklundh, and A. Loutfi, “Towards measurement of interaction quality in social robotic telepresence,” in Proceedings of the Ro-Man Workshop on Social Robotic Telepresence, pp. 24–31, 2012.
[77]  Florence, “Florence project,” December 2012, http://www.florence-project.eu.
[78]  GiraffPlus, “GiraffPlus project,” December 2012, http://giraffplus.eu.
[79]  DN, “Roboten Stepan—klassens ljus,” January 21 2011, http://www.dn.se/nyheter/varlden/roboten-stepan–klassens-ljus.
[80]  R. Bloss, “High school student goes to class robotically,” Industrial Robot, vol. 38, no. 5, pp. 465–468, 2011.
[81]  Cambio, “Robot helps sick teen attend high school,” January 25 2011, http://www.cambio.com/2011/01/25/robot-helps-sick-teen-attend-high-school.
[82]  Singularityhub, “Texas students attends school as a robot—a sign of things to come,” February 2 2011, http://singularityhub.com/2011/02/02/texas-student-attends-school-as-a-robot-a-sign-of-things-to-come-video/.
[83]  E. Bridgeman and N. C. Bridgeman, “A future for robots in schools: fact of fantasy?” New Zealand Journal of Applied Computing and Information Technology, vol. 12, no. 1, 2008.
[84]  D. I. Fels, J. K. Waalen, S. Zhai, and P. L. Weiss, “Telepresence under exceptional circumstances: enriching the connection to school for sick children,” in Proceedings of the International Conference on Human-Computer Interaction (INTERACT '01), pp. 617–624, 2001.
[85]  A. Cheetham, C. Young, and D. I. Fels, “Interface development for a child’s video conferencing robot,” in Proceedings of the IEA2000/HFES2000 Congress, vol. 1, pp. 380–383, 2000.
[86]  D. I. Fels and P. L. Weiss, “Toward determining an attention-getting device for improving interaction during video-mediated communication,” Computers in Human Behavior, vol. 16, no. 2, pp. 189–198, 2000.
[87]  J. Yeung and D. I. Fels, “A remote telepresence system for high school classrooms,” in Proceedings of the Canadian Conference on Electrical and Computer Engineering, pp. 1447–1450, May 2005.
[88]  Maastricht University, “Swarmlab robots agents & interaction,” August 2012, http://swarmlab.unimaas.nl/.
[89]  D. Schneider, “I, office worker,” IEEE Spectrum, vol. 47, no. 10, pp. 20–21, 2010.
[90]  N. Karnad and V. Isler, “A multi-robot system for unconfined video-conferencing,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '10), pp. 356–361, May 2010.
[91]  D. Lazewatsky and W. Smart, “An inexpensive robot platform for teleoperation and experimentation,” in Proceedings of the International Conference on Robotics and Automation (ICRA '11), pp. 1211–1216, 2011.
[92]  D. Sirkin, G. Venolia, J. Tang et al., “Motion and attention in a kinetic videoconferencing proxy,” in Proceedings of the International Conference on Human-Computer Interaction (INTERACT '11), pp. 162–180, 2011.
[93]  International Society for Presence Research, “The concept of presence: explication statement,” 2000, http://ispr.info/.
[94]  H. Nakanishi, Y. Murakami, D. Nogami, and H. Ishiguro, “Minimum movement matters: impact of robot-mounted cameras on social telepresence,” in Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW '08), pp. 303–312, November 2008.
[95]  H. Nakanishi, K. Kato, and H. Ishiguro, “Zoom cameras and movable displays enhance social telepresence,” in Proceedings of the 29th Annual CHI Conference on Human Factors in Computing Systems (CHI '11), pp. 63–72, May 2011.
[96]  M. Lombard, T. B. Ditton, and L. Weinstein, “Measuring presence: the temple presence inventory,” in Proceedings of the 12th Annual International Workshop on Presence, 2009.
[97]  F. Biocca and C. Harms, “Networked minds social presence inventory: (Scales only, Version 1.2),” December 2012, http://cogprints.org/6742/1/2002_netminds_scales.pdf.
[98]  D. Sirkin and W. Ju, “Communicating meaning and team role through gesturing robots,” in Proceedings of RSS Workshop on Human-Robot Interaction: Perspectives and Contributions to Robotics from the Human Sciences, 2011.
[99]  J. J. Cabibihan, W. C. So, S. Saj S, and Z. Zhang, “Telerobotic pointing gestures shape human spatial cognition,” International Journal of Social Robotics, vol. 4, no. 3, pp. 263–272, 2012.
[100]  I. Rae, L. Takayama, and B. Mutlu, “One of the gang: supporting in-group behavior for embodied mediated communication,” in Proceedings of the 30th Annual CHI Conference on Human Factors in Computing Systems (CHI '12), pp. 3091–3100, May 2012.
[101]  K. M. Tsui, M. Desai, and H. A. Yanco, “Towards measuring the quality of interaction: communication through telepresence robots,” in Proceedings of the Performance Metrics for Intelligent Systems, 2012.
[102]  T. Nomura, T. Suzuki, T. Kanda, and K. Kato, “Measurement of negative attitudes towards robots,” Interaction Studies, vol. 7, no. 3, pp. 437–454, 2006.
[103]  K. M. Tsui, M. Desai, H. A. Yanco, H. Cramer, and N. Kemper, “Measuring attitudes towards telepresence robots,” International Journal of Intelligent Control and Systems, vol. 16, no. 2, pp. 113–123, 2011.
[104]  T. van Oosterhout and A. Visser, “A visual method for proxemics measurements,” in Proceedings of the Workshop on Metrics for Human-Robot Interaction, pp. 61–68, 2008.
[105]  H. Kuzuoka, Y. Furusawa, N. Kobayashi, and K. Yamazaki, “Effect of displaying a remote operator's face on a media robot,” in Proceedings of the International Conference on Control, Automation and Systems (ICCAS '07), pp. 745–748, October 2007.
[106]  LPR, “Laboratory for perceptual robotics,” August 2012, http://www-robotics.cs.umass.edu/index.php/Robots/Robots.
[107]  K. M. Tsui and H. A. Yanco, “Assistive, rehabilitation, and surgical robots from the perspective of medical and healthcare professionals,” in Proceedings of the AAAI Workshop on Human Implications of Human-Robot Interaction, pp. 34–39, July 2007.
[108]  H. J. Rogove, D. McArthur, B. M. Demaerschalk, and P. M. Vespa, “Barriers to telemedicine: survey of current users in acute care units,” Telemedicine and e-Health, vol. 18, no. 1, pp. 43–53, 2012.
[109]  D. B. Baker, R. Zhou, and D. Song, “Design and prototyping of an economical teleoperations test-bed for human factors research: cost, resource requirements and capability assessment,” in Proceedings of the International Conference on Computers and Industrial Engineering, pp. 526–529, 2005.
[110]  D. J. Bruemmer, D. A. Few, M. C. Walton et al., ““Turn off the television!”: real-world robotic exploration experiments with a virtual 3-D display,” in Proceedings of the 38th Annual Hawaii International Conference on System Sciences, p. 296, January 2005.
[111]  J. L. Drury, J. Scholtz, and H. Yanco, “Awareness in human robot interactions,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 568–573, 2003.
[112]  B. Keyes, R. Casey, H. A. Yanco, B. A. Maxwell, and Y. Georgiev, “Camera placement and multi-camera fusion for remote robot operation,” in Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics, 2006.
[113]  B. Ricks, C. W. Nielsen, and M. A. Goodrich, “Ecological displays for robot interaction: a new perspective,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '04), pp. 2855–2860, October 2004.
[114]  T. Ito, “Hand gesture-based manipulation of a personalized avatar robot in remote communication,” in Proceedings of HCII International Conference on Human Interface and the Management of Information, pp. 425–434, 2011.
[115]  L. Takayama, E. Marder-Eppstein, H. Harris, and J. Beer, “Assisted driving of a mobile remote presence system; System design and controlled user evaluation,” in Proceedings of the International Conference on Robotics and Automation (ICRA '11), pp. 1883–1889, 2011.
[116]  J. González-Jiménez, C. Galindo, and J. R. Ruiz-Sarmiento, “Technical improvements of the giraff telepresence robot based on users’ evaluation,” in Proceedings of the 21st IEEE International Symposium on Robot and Human Interactive Communication (Ro-Man '12), September 2012.
[117]  S. G. Hart, “NASA-task load index (NASA-TLX); 20 years later,” in Proceedings of the 50th Annual Meeting of the Human Factors and Ergonomics Society (HFES '06), pp. 904–908, October 2006.
[118]  A. M. Lund, “Measuring usability with the USE questionnaire,” STC Usability SIG Newsletter, vol. 8, no. 2, 2001.
[119]  A. Kiselev and A. Loutfi, “Using a mental workload index as a measure of usability of a user interface for social robotic telepresence,” in Proceedings of the Ro-Man Workshop on Social Robotic Telepresence, pp. 3–6, 2012.
[120]  L. Riano, C. Burbridge, and T. M. McGinnity, “A study of enhanced robot autonomy in telepresence,” in Proceedings of the Artificial Intelligence and Cognitive Systems, 2011.
[121]  B. G. Witmer and M. J. Singer, “Measuring presence in virtual environments: a presence questionnaire,” Presence, vol. 7, no. 3, pp. 225–240, 1998.
[122]  N. P. Jouppi, S. Iyer, W. Mack, S. Thomas, and A. Slayden, “A first generation mutually-immersive mobile telepresence surrogate with automatic backtracking,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '04), pp. 1670–1675, May 2004.
[123]  ITU-T Recommendations, “P. 805 (04/2007)—Subjective evaluation of conversational quality,” April 2007, http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=9066.
[124]  ITU-T Recommendations, “P. 910 (04/2008)—subjective video quality assessment methods for multimedia applications,” April 2008, http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=9317.
[125]  ITU-T Recommendations, “J.247 (08/2008)—objective perceptual multimedia video quality measurement in the presence of a full reference,” August 2008, http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=9497&lang=en.
[126]  E. Guizzo and T. Deyle, “Robotics Trends for 2012,” August 2012, http://spectrum.ieee.org/automaton/robotics/robotics-hardware/robotics-trends-for-2012.
[127]  E. Guizzo, “Telerobots [turning poing],” IEEE Robotics and Automation Magazine, vol. 18, no. 1, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413