全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Molecular Simulation of Hydrogen Storage in Ion-Exchanged X Zeolites

DOI: 10.1155/2014/189745

Full-Text   Cite this paper   Add to My Lib

Abstract:

Grand Canonical Monte Carlo (GCMC) method was employed to simulate the adsorption properties of molecular hydrogen on ion-exchanged X zeolites at 100–293?K and pressures up to 10?MPa in this paper. The effect of cation type, temperature, and pressure on hydrogen adsorption capacity, heat of adsorption, adsorption sites, and adsorption potential energy of ion-exchanged X zeolites was analyzed. The results indicate that the hydrogen adsorption capacity increases with the decrease in temperatures and the increase in pressures and decreases in the order of . The isosteric heat of adsorption for all the three zeolites decreases appreciably with the increase in hydrogen adsorption capacity. The hydrogen adsorption sites in the three zeolites were determined by the simulated distribution of hydrogen adsorption energy and the factors that influence their variations were discussed. Adsorption temperature has an important effect on the distribution of hydrogen molecules in zeolite pores. 1. Introduction The utilization of hydrogen as a possible substitute for fossil fuels requires the solution of a number of problems related to hydrogen production, transportation, storage, and fuel cell technology [1]. Among them, safe and efficient storage of hydrogen is very important for hydrogen energy applications. Various methods for storing hydrogen were developed which include high-pressure tanks for gaseous hydrogen, cryogenic vessel for liquid hydrogen, and metal hydride for solid-state storage systems [2–4]. The first two methods bear the danger of explosion if handled improperly, and the latter one suffers high cost and weight. Recently, attention has been focused on light microporous materials such as carbon [5], aluminosilicate zeolites [6, 7], and metal organic frameworks (MOFs) [8] for storing hydrogen by adsorption because the adsorption is reversible and thus the sorbent can be recycled. Zeolites are a large class of crystalline aluminosilicate materials that have high thermal stability and regular and single size pores and the diameter of the pores can be controlled by changing the size and charge of the exchangeable cations. Thus, they offer enormous potential for storage of gases. The hydrogen storage capacity of various types of zeolites had been reported experimentally and theoretically [9–12]. However, little attention was previously paid to the distribution of adsorption sites and adsorption potential energy for the molecular hydrogen on zeolites. Li and Yang [13] reported experimentally that the alkali-metal cations (Li+, Na+, K+) and the framework atoms

References

[1]  L. Schlspbach and A. Zttel, “Review article Hydrogen-storage materials for mobile applications,” Nature, vol. 414, pp. 353–358, 2001.
[2]  L. Schlapbach, “Hydrogen as a fuel and its storage for mobility and transport,” MRS Bulletin, vol. 27, no. 9, pp. 675–676, 2002.
[3]  S. M. Aceves, G. D. Berry, and G. D. Rambach, “Insulated pressure vessels for hydrogen storage on vehicles,” International Journal of Hydrogen Energy, vol. 23, no. 7, pp. 583–591, 1998.
[4]  A. Dedieu, Transitional Metal Hydrides, Wiley-VCH, New York, NY, USA, 1992.
[5]  F. Lamari Darkrim, P. Malbrunot, and G. P. Tartaglia, “Review of hydrogen storage by adsorption in carbon nanotubes,” International Journal of Hydrogen Energy, vol. 27, no. 2, pp. 193–202, 2002.
[6]  H. W. Langmi, A. Walton, M. M. Al-Mamouri et al., “Hydrogen adsorption in zeolites A, X, Y and RHO,” Journal of Alloys and Compounds, vol. 356-357, pp. 710–715, 2003.
[7]  M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen, and K. P. de Jong, “Hydrogen storage using physisorption-materials demands,” Applied Physics A, vol. 72, no. 5, pp. 619–623, 2001.
[8]  N. L. Rosi, J. Eckert, M. Eddaoudi et al., “Hydrogen storage in microporous metal-organic frameworks,” Science, vol. 300, no. 5622, pp. 1127–1129, 2003.
[9]  L. Regli, A. Zecchina, J. G. Vitillo et al., “Hydrogen storage in Chabazite zeolite frameworks,” Physical Chemistry Chemical Physics, vol. 7, no. 17, pp. 3197–3203, 2005.
[10]  F. Stéphanie-Victoire, A.-M. Goulay, and E. Cohen de Lara, “Adsorption and coadsorption of molecular hydrogen isotopes in zeolites. 1. Isotherms of H2, HD, and D2 in NaA by thermomicrogravimetry,” Langmuir, vol. 14, no. 25, pp. 7255–7259, 1998.
[11]  M. A. Makarova, V. L. Zholobenko, K. M. Al-Ghefaili, N. E. Thompson, J. Dewing, and J. Dwyer, “Br?nsted acid sites in zeolites. FTIR study of molecular hydrogen as a probe for acidity testing,” Journal of the Chemical Society, Faraday Transactions, vol. 90, no. 7, pp. 1047–1054, 1994.
[12]  A. Zecchina, S. Bordiga, J. G. Vitillo et al., “Liquid hydrogen in protonic chabazite,” Journal of the American Chemical Society, vol. 127, no. 17, pp. 6361–6366, 2005.
[13]  Y. Li and R. T. Yang, “Hydrogen storage in low silica type X zeolites,” Journal of Physical Chemistry B, vol. 110, no. 34, pp. 17175–17181, 2006.
[14]  V. B. Kazansky, V. Y. Borovkov, A. Serich, and H. G. Karge, “Low temperature hydrogen adsorption on sodium forms of faujasites: barometric measurements and drift spectra,” Microporous and Mesoporous Materials, vol. 22, no. 1–3, pp. 251–259, 1998.
[15]  V. B. Kazansky, “Drift spectra of adsorbed dihydrogen as a molecular probe for alkaline metal ions in faujasites,” Journal of Molecular Catalysis A, vol. 141, pp. 83–94, 1999.
[16]  M. Feuerstein and R. F. Lobo, “Characterization of Li cations in zeolite LiX by solid-state NMR spectroscopy and neutron diffraction,” Chemistry of Materials, vol. 10, no. 8, pp. 2197–2204, 1998.
[17]  K. Seff and L. Zhu, “Cation crowding in zeolites: reinvestigation of the crystal structure of dehydrated potassium-exchanged zeolite X,” Journal of Physical Chemistry B, vol. 104, no. 38, pp. 8946–8951, 2000.
[18]  Y. I. Smolin, Y. F. Shepelev, and A. A. Anderson, “Atomic scale mechanism of CaX zeolite dehydration,” Acta Crystallographica B, vol. 45, pp. 124–128, 1989.
[19]  D. W. Lewis, A. R. Ruiz-Salvador, A. Gómez et al., “Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues,” CrystEngComm, vol. 11, no. 11, pp. 2272–2276, 2009.
[20]  http://www.pwscf.org.
[21]  J. R. Hill and J. Sauer, “Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica,” Journal of Physical Chemistry, vol. 98, no. 4, pp. 1238–1244, 1994.
[22]  A. Michels, W. de Graaff, and C. A. Ten Seldam, “Virial coefficients of hydrogen and deuterium at temperatures between -175°C and +150°C. Conclusions from the second virial coefficient with regards to the intermolecular potential,” Physica, vol. 26, no. 6, pp. 393–408, 1960.
[23]  K. Watanabe, N. Austin, and M. R. Stapleton, “Investigation of the air separation properties of zeolites types A, X and Y by monte carlo simulations,” Molecular Simulations, vol. 15, no. 4, pp. 197–221, 1995.
[24]  E. Beerdsen, D. Dubbeldam, B. Smit, T. J. H. Vlugt, and S. Calero, “Simulating the effect of nonframework cations on the adsorption of alkanes in MFI-type zeolites,” Journal of Physical Chemistry B, vol. 107, no. 44, pp. 12088–12096, 2003.
[25]  L. Uytterhoeven, D. Dompas, and W. J. Mortier, “Theoretical investigations on the interaction of benzene with faujasite,” Journal of the Chemical Society, Faraday Transactions, vol. 88, no. 18, pp. 2753–2760, 1992.
[26]  M. P. Allen and D. J. Tildesley, Simulation of Liquids, Clarendon, Oxford, UK, 1987.
[27]  Y. P. Joshi and D. J. Tildesley, “Molecular dynamics simulation and energy minimization of O2 adsorbed on a graphite surface,” Surface Science, vol. 166, no. 1, pp. 169–182, 1986.
[28]  B. Weinberger, F. D. Lamari, S. B. Kayiran, A. Gicquel, and D. Levesque, “Molecular modeling of H2 purification on Na-LSX zeolite and experimental validation,” AIChE Journal, vol. 51, no. 1, pp. 142–148, 2005.
[29]  A. Gupta, S. Chempath, M. J. Sanborn, L. A. Clark, and R. Q. Snurr, “Object-oriented programming paradigms for molecular modeling,” Molecular Simulation, vol. 29, no. 1, pp. 29–46, 2003.
[30]  A. V. Kumar, H. Jobic, and S. K. Bhatia, “Quantum effects on adsorption and diffusion of hydrogen and deuterium in microporous materials,” Journal of Physical Chemistry B, vol. 110, no. 33, pp. 16666–166671, 2006.
[31]  A. W. C. van den Berg, S. T. Bromley, J. C. Wojdel, and J. C. Jansen, “Adsorption isotherms of H2 in microporous materials with the SOD structure: a grand canonical Monte Carlo study,” Microporous and Mesoporous Materials, vol. 87, no. 3, pp. 235–242, 2006.
[32]  L. F. Wang and R. T. Yang, “Hydrogen storage properties of low-silica type X zeolites,” Industrial and Engineering Chemistry Research, vol. 49, pp. 3634–3641, 2010.
[33]  B. Weinberger, F. D. Lamari, A. Veziroglu, S. Beyaz, and M. Beauverger, “Accurate gas: zeolite interaction measurements by using high pressure gravimetric volumetric adsorption method,” International Journal of Hydrogen Energy, vol. 34, no. 7, pp. 3191–3196, 2009.
[34]  B. D. Franekel, “Zeolitic encapsulation. Part 2: percolation and trapping of inert gases in A-type zeolites,” Journal of the Chemical Society, Faraday Transactions I, vol. 77, pp. 2041–2052, 1981.
[35]  G. Maurin, P. L. Llewellyn, T. Poyet, and B. Kuchta, “Adsorption of argon and nitrogen in X-faujasites: relationships for understanding the interactions with monovalent and divalent cations,” Microporous and Mesoporous Materials, vol. 79, no. 1–3, pp. 53–59, 2005.
[36]  J. Li, E. Wu, J. Song, F. Xiao, and C. Geng, “Cryoadsorption of hydrogen on divalent cation-exchanged X-zeolites,” International Journal of Hydrogen Energy, vol. 34, no. 13, pp. 5458–5465, 2009.
[37]  X. M. Du and E. D. Wu, “Physisorption of hydrogen in A, X and ZSM-5 types of zeolites at moderately high pressures,” Chinese Journal of Chemical Physics, vol. 19, pp. 457–462, 2006.
[38]  R. Yamk, U. Yamk, C. Heiden, and J. G. Daunt, “Adsorption isotherms and heats of adsorption of neon and hydrogen on zeolite and charcoal between 20 and 90 K,” Journal of Low Temperature Physics, vol. 45, no. 5-6, pp. 443–455, 1981.
[39]  M. A. Levin, A. A. Fomkin, A. A. Isirikyan, and V. V. Serpinskii, “Adsorption heats of hydrogen isotopes on zeolite Nax at elevated pressures,” Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, vol. 35, no. 12, p. 2594, 1986.
[40]  T. C. Golden and S. Sircar, “Gas adsorption on silicalite,” Journal of Colloid And Interface Science, vol. 162, no. 1, pp. 182–188, 1994.
[41]  Y. D. Chen, R. T. Yang, and P. Uawithya, “Diffusion of oxygen, nitrogen and their mixtures in carbon molecular sieve,” AIChE Journal, vol. 40, no. 4, pp. 577–585, 1994.
[42]  J. Eckert, F. R. Trouw, and M. McMenomy, “Co-adsorption studies of hydrogen with nitrogen in zeolites,” in Proceedings of the Workshop Materials Research Using Cold Neutrons at Pulsed Neutron Sources, August 1997.
[43]  K. P. Prasanth, R. S. Pillai, H. C. Bajaj et al., “Adsorption of hydrogen in nickel and rhodium exchanged zeolite X,” International Journal of Hydrogen Energy, vol. 33, no. 2, pp. 735–745, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133