全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Free-Form Rapid Prototyped Porous PDMS Scaffolds Incorporating Growth Factors Promote Chondrogenesis

DOI: 10.1155/2014/612976

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, we present a promising approach for the rapid development of porous polydimethylsiloxane (PDMS) scaffold prototypes, with outer geometry defined from the design stage, according to the form of conventional implants or adapted to patients’ biostructures. The manufacture method is based on phase separation processes using materials obtained by casting within additive rapid prototyped molds. We include a comparative study of PDMS sponges obtained by different simple processes. Final in vitro assessment is carried out using hMSCs (bone marrow-derived human mesenchymal stem cells), cultured onto porous PDMS scaffolds functionalized with aminopropyltriethoxysilane (APTS) and equilibrated with a trophic factors medium produced by the cells. Results show that porous PDMS scaffold prototypes are excellent 3D platforms for hMSCs adhesion. Furthermore, this PDMS-3D niche, seeded with hMSCs and chondrogenic incubation medium during three weeks, showed a successful chondrogenesis determined by collagen type II expression. Thus, results show a versatile method to produce a 3D niche to address questions about cartilage and endochondral bone formation or skeleton tissues clinical approaches. 1. Introduction Tissue engineering combines biological, physical, and engineering knowledge to provide artificially developed substitutes for tissues and organs linked to repair and replacement therapies. A key element involved in tissue engineering processes is the extracellular matrix or scaffold which serves as substrate or framework for cell growth, aggregation, and tissue development [1]. These scaffolds must be porous so as to allow cell migration during the colonization process as well as the transport of nutrients and waste to and from cells, and they have to be also resistant enough to withstand possible mechanical demands, especially if final scaffold (or device) implantation is desired. Additionally, as cells are able to feel their microenvironment and substrate texture upon which they lie by changing their morphology, cytoskeleton configuration, and intra- and extracellular signaling, increasing efforts are continuously being focused on advanced design and manufacturing technologies, so as to generate and modify the structures and surfaces of biomaterials. Aspects such as porosity, pore size, and surface microtexture promote cell adherence, migration, and proliferation within the scaffold, for subsequent differentiation into relevant cell types. Thus, tissue progenitor cells and the scaffold play a fundamental role in most tissue engineering strategies as

References

[1]  R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993.
[2]  W. E. Thomas, D. E. Discher, and V. Prasad Shastri, “Mechanical regulation of cells by materials and tissues,” MRS Bulletin, vol. 35, no. 8, pp. 578–583, 2010.
[3]  W. L. K. Chen, M. Likhitpanichkul, A. Ho, and C. A. Simmons, “Integration of statistical modeling and high-content microscopy to systematically investigate cell-substrate interactions,” Biomaterials, vol. 31, no. 9, pp. 2489–2497, 2010.
[4]  A. Buxboim and D. E. Discher, “Stem cells feel the difference,” Nature Methods, vol. 7, no. 9, pp. 695–697, 2010.
[5]  A. Díaz Lantada, Handbook of Advanced Design and Manufacturing Technologies for Biodevices, Springer, 2013.
[6]  P. J. S. Bartolo, H. Almeida, and T. Laoui, “Rapid prototyping and manufacturing for tissue engineering scaffolds,” International Journal of Computer Applications in Technology, vol. 36, no. 1, pp. 1–9, 2009.
[7]  J. Y. Tan, C. K. Chua, and K. F. Leong, “Indirect fabrication of gelatin scaffolds using rapid prototyping technology,” Virtual and Physical Prototyping, vol. 5, no. 1, pp. 45–53, 2010.
[8]  A. K. Ekaputra, Y. Zhou, S. M. Cool, and D. W. Hutmacher, “Composite electrospun scaffolds for engineering tubular bone grafts,” Tissue Engineering A, vol. 15, no. 12, pp. 3779–3788, 2009.
[9]  S. Lohfeld, M. A. Tyndyk, S. Cahill, N. Flaherty, V. Barron, and P. E. McHugh, “A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering,” Journal of Biomedical Science and Engineering, vol. 3, p. 138, 2010.
[10]  R. Tzezana, E. Zussman, and S. Levenberg, “A layered ultra-porous scaffold for tissue engineering, created via a hydrospinning method,” Tissue Engineering C, vol. 14, no. 4, pp. 281–288, 2008.
[11]  A. Díaz-Lantada, A. Mosquera, J. L. Endrino, and P. Lafont, “Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications,” Journal of Physics, vol. 252, no. 1, Article ID 012003, 2010.
[12]  J. Stampfl, H. Fouad, S. Seidler et al., “Fabrication and moulding of cellular materials by rapid prototyping,” International Journal of Materials and Product Technology, vol. 21, no. 4, pp. 285–296, 2004.
[13]  R. Infuehr, N. Pucher, C. Heller et al., “Functional polymers by two-photon 3D lithography,” Applied Surface Science, vol. 254, no. 4, pp. 836–840, 2007.
[14]  P. S. Maher, R. P. Keatch, K. Donnelly, and J. Z. Paxton, “Formed 3D bio-scaffolds via rapid prototyping technology,” in Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering (ECIFMBE '08), vol. 22, pp. 2200–2204, November 2008.
[15]  G. E. Ryan, A. S. Pandit, and D. P. Apatsidis, “Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique,” Biomaterials, vol. 29, no. 27, pp. 3625–3635, 2008.
[16]  P. H. Warnke, T. Douglas, P. Wollny et al., “Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering,” Tissue Engineering C, vol. 15, no. 2, pp. 115–124, 2009.
[17]  J. Stampfl, S. Baudis, C. Heller et al., “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” Journal of Micromechanics and Microengineering, vol. 18, no. 12, Article ID 125014, 2008.
[18]  I. Manjubala, A. Woesz, C. Pilz et al., “Biomimetic mineral-organic composite scaffolds with controlled internal architecture,” Journal of Materials Science, vol. 16, no. 12, pp. 1111–1119, 2005.
[19]  M. Schuster, C. Turecek, B. Kaiser, J. Stampfl, R. Liska, and F. Varga, “Evaluation of biocompatible photopolymers—I: photoreactivity and mechanical properties of reactive diluents,” Journal of Macromolecular Science A, vol. 44, no. 5, pp. 547–557, 2007.
[20]  M. Schuster, C. Turecek, A. Mateos, J. Stampfl, R. Liska, and F. Varga, “Evaluation of biocompatible photopolymers—II: further reactive diluents,” Monatshefte fur Chemie, vol. 138, no. 4, pp. 261–268, 2007.
[21]  F. Jung, C. Wischke, and A. Lendlein, “Degradable, multifunctional cardiovascular implants: challenges and hurdles,” MRS Bulletin, vol. 35, no. 8, pp. 607–613, 2010.
[22]  J. Y. Tan, C. K. Chua, and K. F. Leong, “Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect rapid prototyping technique,” Biomedical Microdevices, vol. 15, p. 83, 2013.
[23]  C. K. F. Chan, C.-C. Chen, C. A. Luppen et al., “Endochondral ossification is required for haematopoietic stem-cell niche formation,” Nature, vol. 457, no. 7228, pp. 490–494, 2009.
[24]  T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney, “Polymeric system for dual growth factor delivery,” Nature Biotechnology, vol. 19, no. 11, pp. 1029–1034, 2001.
[25]  A. Perets, Y. Baruch, F. Weisbuch, G. Shoshany, G. Neufeld, and S. Cohen, “Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres,” Journal of Biomedical Materials Research A, vol. 65, no. 4, pp. 489–497, 2003.
[26]  M. W. Laschke, M. Rücker, G. Jensen et al., “Incorporation of growth factor containing Matrigel promotes vascularization of porous PLGA scaffolds,” Journal of Biomedical Materials Research A, vol. 85, no. 2, pp. 397–407, 2008.
[27]  J. Chen, R. Zjang, and W. Wang, Fabricating Microporous PDMS Using Water-in-PDMS Emulsion, RSC Publishing Blogs Home. Chips and Tips, 2012.
[28]  S. Peng, P.G. Hartley, T.C. Hughes, and Q. Guo, “Controlling morphology and porosity of porous siloxane membranes through water content of precursor microemulsion,” Soft Maters, vol. 8, no. 40, p. 10493, 2012.
[29]  P. K. Yuen, H. Su, V. N. Goral, and K. A. Fink, “Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices,” Lab on a Chip, vol. 11, no. 8, pp. 1541–1544, 2011.
[30]  Q. Tan, S. Li, J. Ren, and C. Chen, “Fabrication of porous scaffolds with a controllable microstructure and mechanical properties by porogen fusion technique,” International Journal of Molecular Sciences, vol. 12, no. 2, pp. 890–904, 2011.
[31]  F. Ciaramella, V. Jousseaume, S. Maitrejean, B. Rémiat, M. Verdier, and G. Passemard, “Mechanical properties of porous MSQ films: impact of the porogen loading and matrix crosslinking,” in Proceedings of the Materials Research Society Spring Meeting, pp. 17–22, April 2005.
[32]  W. Y. Yeong, N. Sudarmadji, H. Y. Yu et al., “Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering,” Acta Biomaterialia, vol. 6, no. 6, pp. 2028–2034, 2010.
[33]  A. Díaz Lantada, R. D. Valle-Fernández, P. L. Morgado et al., “Development of personalized annuloplasty rings: combination of CT images and CAD-CAM tools,” Annals of Biomedical Engineering, vol. 38, no. 2, pp. 280–290, 2010.
[34]  M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999.
[35]  D. P. Lennon, S. E. Haynesworth, S. P. Bruder, N. Jaiswal, and A. I. Caplan, “Human and animal mesenchymal progenitor cells from bone marrow: identification of serum for optimal selection and proliferation,” In Vitro Cellular and Developmental Biology, vol. 32, no. 10, pp. 602–611, 1996.
[36]  S. Ogueta, J. Mu?oz, E. Obregon, E. Delgado-Baeza, and J. P. García-Ruiz, “Prolactin is a component of the human synovial liquid and modulates the growth and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells,” Molecular and Cellular Endocrinology, vol. 190, no. 1-2, pp. 51–63, 2002.
[37]  M. Romero-Prado, C. Blázquez, C. Rodríguez-Navas et al., “Functional characterization of human mesenchymal stern cells that maintain osteochondral fates,” Journal of Cellular Biochemistry, vol. 98, no. 6, pp. 1457–1470, 2006.
[38]  A. Javed, B. Guo, S. Hiebert et al., “Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBFα/AML/PEBP2α) dependent activation of tissue-specific gene transcription,” Journal of Cell Science, vol. 113, no. 12, pp. 2221–2231, 2000.
[39]  J. Normatov and M. S. Silverstein, “Porous interpenetrating network hybrids synthesized within high internal phase emulsions,” Polymer, vol. 48, no. 22, pp. 6648–6655, 2007.
[40]  J. Y. Wong and J.D. Bronzino, Biomaterials, CRC-Press, 2007.
[41]  F. J. Rojo, J.M. Atienza, E. Jorge-Herrero, J.M. García-Páez, and G.V. Guinea, “Resistencia a tracción de membranas de pericardio para válvulas cardiacas biológicas,” Anales de Mecánica de la Fractura, vol. 26, no. 1, 2009.
[42]  R. K. Goyal, P. Biancani, A. Phillips, and H.M. Spiro, Mechanical Properties of the Esophageal Wall, Yale University, 1971.
[43]  I. Levental, P. C. Georges, and P. A. Janmey, “Soft biological materials and their impact on cell function,” Soft Matter, vol. 3, no. 3, pp. 299–306, 2007.
[44]  J. M. Mansour, “Biomechanics of cartilage,” in Kinesiology: The Mechanics and Pathomechanics of Human Movement, C. A. Oatis, Ed., Lippincott Williams and Wilkins, 2003.
[45]  A. Tsouknidas, A. Lontos, S. Savvakis, and N. Michailidis, “Nonintrusive 3D reconstruction of human bone models to simulate the biomechanical response,” 3D Research Express, vol. 3, no. 2, p. 5, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133