全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On a Nonsymmetric Keyfitz-Kranzer System of Conservation Laws with Generalized and Modified Chaplygin Gas Pressure Law

DOI: 10.1155/2013/187217

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is devoted to the study of a nonsymmetric Keyfitz-Kranzer system of conservation laws with the generalized and modified Chaplygin gas pressure law, which may admit delta shock waves, a topic of interest. Firstly, we solve the Riemann problems with piecewise constant data having a single discontinuity. For the generalized Chaplygin gas pressure law, the solution consists of three different structures: , , and . Existence and uniqueness of delta shock solution are established under the generalized Rankine-Hugoniot relation and entropy condition. For the modified Chaplygin gas pressure law, the structures of solution are and . Secondly, we discuss the limits of Riemann solutions for the modified Chaplygin gas pressure law as the pressure law tends to the generalized Chaplygin gas one. In particular, for some cases, the solution tends to a delta shock wave, and it is different from the delta shock wave for the generalized Chaplygin gas pressure law with the same initial data. Thirdly, we simulate the Riemann solutions and examine the formation process of delta shock wave by employing the Nessyahu-Tadmor scheme. The numerical results are coincident with the theoretical analysis. 1. Introduction Nonlinear hyperbolic conservation laws are a fundamental principle in building mathematical models for many natural processes. For them, there exists an important kind of nonclassical solution, that is, delta shock wave. It is a generalization of an ordinary shock. From the mathematical point of view, it is a kind of discontinuity, on which at least one of the state variables contains Dirac delta function with a shock as its support. From the physical point of view, it represents the process of concentration of the mass. The theory of nonlinear hyperbolic conservation laws admitting delta shock waves is interesting and has been extensively developed in the last several years; see [1–13] and the references cited therein. Consider the hyperbolic system of conservation laws: where and . It belongs to the nonsymmetric Keyfitz-Kranzer system (see [14, 15]): which is of interest because it arises in such areas as elasticity theory, magnetohydrodynamics, and enhanced oil recovery. For delta shock waves, the nonsymmetric form is more convenient than the symmetric form (see [14]). Model (1) is also a transformation of the traffic flow model introduced by Aw and Rascle [16], where and are the density and velocity of cars on the roadway and is the velocity offset. Let us recall the linear degeneracy and genuine nonlinearity of characteristic fields for quasilinear

References

[1]  H. C. Kranzer and B. L. Keyfitz, “A strictly hyperbolic system of conservation laws admitting singular shocks,” in Nonlinear Evolution Equations that Change Type, vol. 27, pp. 107–125, Springer, New York, NY, USA, 1990.
[2]  P. LeFloch, “An existence and uniqueness result for two nonstrictly hyperbolic systems,” in Nonlinear Evolution Equations that Change Type, vol. 27, pp. 126–138, Springer, New York, NY, USA, 1990.
[3]  D. C. Tan and T. Zhang, “Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws I. Four-J cases, II,” Journal of Differential Equations, vol. 111, no. 2, pp. 203–254, 1994.
[4]  D. C. Tan, T. Zhang, and Y. X. Zheng, “Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws,” Journal of Differential Equations, vol. 112, no. 1, pp. 1–32, 1994.
[5]  J. Li, T. Zhang, and S. Yang, The Two-Dimensional Riemann Problem in Gas Dynamics, vol. 98 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman, 1998.
[6]  H. Yang, “Riemann problems for a class of coupled hyperbolic systems of conservation laws,” Journal of Differential Equations, vol. 159, no. 2, pp. 447–484, 1999.
[7]  G.-Q. Chen and H. Liu, “Formation of -shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids,” SIAM Journal on Mathematical Analysis, vol. 34, no. 4, pp. 925–938, 2003.
[8]  G.-Q. Chen and H. Liu, “Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids,” Physica D, vol. 189, no. 1-2, pp. 141–165, 2004.
[9]  V. M. Shelkovich, “The Riemann problem admitting -, -shocks, and vacuum states (the vanishing viscosity approach),” Journal of Differential Equations, vol. 231, no. 2, pp. 459–500, 2006.
[10]  L. Guo, W. Sheng, and T. Zhang, “The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system,” Communications on Pure and Applied Analysis, vol. 9, no. 2, pp. 431–458, 2010.
[11]  H. Cheng and H. Yang, “Delta shock waves in chromatography equations,” Journal of Mathematical Analysis and Applications, vol. 380, no. 2, pp. 475–485, 2011.
[12]  H. Cheng and H. Yang, “Riemann problem for the isentropic relativistic Chaplygin Euler equations,” Zeitschrift für Angewandte Mathematik und Physik, vol. 63, no. 3, pp. 429–440, 2012.
[13]  H. Yang and Y. Zhang, “New developments of delta shock waves and its applications in systems of conservation laws,” Journal of Differential Equations, vol. 252, no. 11, pp. 5951–5993, 2012.
[14]  B. L. Keyfitz and H. C. Kranzer, “A system of nonstrictly hyperbolic conservation laws arising in elasticity theory,” Archive for Rational Mechanics and Analysis, vol. 72, no. 3, pp. 219–241, 1980.
[15]  Y.-g. Lu, “Existence of global bounded weak solutions to nonsymmetric systems of Keyfitz-Kranzer type,” Journal of Functional Analysis, vol. 261, no. 10, pp. 2797–2815, 2011.
[16]  A. Aw and M. Rascle, “Resurrection of “second order” models of traffic flow,” SIAM Journal on Applied Mathematics, vol. 60, no. 3, pp. 916–938, 2000.
[17]  P. D. Lax, “Hyperbolic systems of conservation laws. II,” Communications on Pure and Applied Mathematics, vol. 10, pp. 537–566, 1957.
[18]  P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, vol. 11 of CBMS Regional Conference Series in Applied Mathematics, Society for industrial and Applied Mathematics, Philadelphia, 1973.
[19]  H. Cheng, “Delta shock waves for a linearly degenerate hyperbolic system of conservation laws of Keyfitz-Kranzer type,” Advances in Mathematical Physics, vol. 2013, Article ID 958120, 10 pages, 2013.
[20]  H. Nessyahu and E. Tadmor, “Nonoscillatory central differencing for hyperbolic conservation laws,” Journal of Computational Physics, vol. 87, no. 2, pp. 408–463, 1990.
[21]  S. A. Chaplygin, “On gas jets,” Scientific Memoirs, Moscow University Mathematic Physics, vol. 21, no. 1063, pp. 1–121, 1904.
[22]  H.-S. Tsien, “Two-dimensional subsonic flow of compressible fluids,” Journal of the Aeronautical Sciences, vol. 6, pp. 399–407, 1939.
[23]  M. Bento, O. Bertolami, and A. Sen, “Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification,” Physical Review D, vol. 66, Article ID 043507, 5 pages, 2002.
[24]  H. Benaoum, “Accelerated universe from modified Chaplygin gas and tachyonic fluid,” High Energy Physics, 11 pages, 2002, http://arxiv.org/abs/hep-th/0205140.
[25]  H. B. Benaoum, “Modified Chaplygin gas cosmology,” Advances in High Energy Physics, Article ID 357802, 12 pages, 2012.
[26]  Y. Brenier, “Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations,” Journal of Mathematical Fluid Mechanics, vol. 7, no. suppl. 3, pp. S326–S331, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413