全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Low-Dosed X-Ray Computed Tomography Imaging by Regularized Fully Spatial Fractional-Order Perona-Malik Diffusion

DOI: 10.1155/2013/371868

Full-Text   Cite this paper   Add to My Lib

Abstract:

Existing fractional-order Perona-Malik Diffusion (FOPMD) algorithms used in noise suppressing suffer from undesired artifacts and speckle effect, which hamper FOPMD used in low-dosed X-ray computed tomography (LDCT) imaging. In this paper, we propose a new FOPMD method for low-dose computed tomography (LDCT) imaging, which is called regularized fully spatial FOPMD (RFS-FOPMD), whose numerical scheme is also given based on Grünwald-Letnikov derivative (G-L derivative). Here, fully spatial FOPMD represents all the integer-order derivatives (IODs) in the right hand of Perona-Malik Diffusion (PMD) which are replaced by fractional-order derivatives (FODs). Since the new scheme has advantages of both regularization and FOPMD, it has good abilities in singularities preserving while suppressing noise. Some real sinogram of LDCT are used to compare the different performances not only for some classical but also for some state-of-art diffusion schemes. These schemes include PMD, regularized PMD (RPMD), and FOPMD in (Hu et al. 2012). Experimental results show that besides good ability in edge preserving, the new scheme also has good stability for iteration number and can avoid artifacts and speckle effect with suitable parameters. 1. Introduction Perona-Malik diffusion (PMD) proposed in 1990 is a popular technique in image denoising and it is defined as [1] where is the initial gray scale image, is the smoothed gray scale image at time , denotes the gradient, is the divergence operator, and is the diffusion coefficient. In 1992, Catté et al. indicated that PMD is ill-posed and they propose a new well-posed method named regularized Perona-Malik diffusion (RPMD), by replacing the gradient in diffusion coefficients by the smoothed version [2]. Thus, the RPMD can be represented as Here is defined as: which is a Gaussian function and is a constant. In order to eliminate undesired “staircase” of PMD and RPMD, high-order PDEs (typically fourth-order PDEs) for image restoration have been introduced in [3, 4]. Though these methods can eliminate the staircase effect efficiently, they often leave the image with isolated black and white speckles (so-called speckle effect) [5]. Recently, fractional-order PMD (FOPMD) has been studied in image denoising [5–14], whose fractional order is , , which is a “natural interpolation” between PMD and fourth-order PDEs. Therefore, it has the benefits of both of PMD and high order PDEs. Bai and Feng proposed a FSFOD method for image denoising with Euler-Lagrange equations of a cost functional and using Fourier-domain to compute the

References

[1]  P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.
[2]  F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM Journal on Numerical Analysis, vol. 29, no. 1, pp. 182–193, 1992.
[3]  Y.-L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1723–1730, 2000.
[4]  T. Chan, A. Marquina, and P. Mulet, “High-order total variation-based image restoration,” SIAM Journal on Scientific Computing, vol. 22, no. 2, pp. 503–516, 2000.
[5]  J. Bai and X.-C. Feng, “Fractional-order anisotropic diffusion for image denoising,” IEEE Transactions on Image Processing, vol. 16, no. 10, pp. 2492–2502, 2007.
[6]  Z. Jun and W. Zhihui, “A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2516–2528, 2011.
[7]  M. Janev, S. Pilipovi?, T. Atanackovi?, R. Obradovi?, and N. Ralevi?, “Fully fractional anisotropic diffusion for image denoising,” Mathematical and Computer Modelling, vol. 54, no. 1-2, pp. 729–741, 2011.
[8]  S. Hu, Z. Liao, and W. Chen, “Sinogram restoration for low-dosed X-ray computed tomography using fractional-order Perona-Malik diffusion,” Mathematical Problems in Engineering, vol. 2012, Article ID 391050, 13 pages, 2012.
[9]  S. Hu, “External fractional-order gradient vector Perona-Malik diffusion for sinogram restoration of low-dosed X-ray computed tomography,” Advances in Mathematical Physics, vol. 2013, Article ID 516919, 14 pages, 2013.
[10]  C. Cattani, A. Ciancio, and B. Lods, “On a mathematical model of immune competition,” Applied Mathematics Letters, vol. 19, no. 7, pp. 678–683, 2006.
[11]  C. Cattani and A. Ciancio, “Separable transition density in the hybrid model for tumor-immune system competition,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 610124, 6 pages, 2012.
[12]  M. Li, Y. Q. Chen, J. Y. Li, and W. Zhao, “H?lder scales of sea level,” Mathematical Problems in Engineering, vol. 2012, Article ID 863707, 22 pages, 2012.
[13]  M. Li, W. Zhao, and C. Cattani, “Delay bound: fractal traffic passes through servers,” Mathematical Problems in Engineering, vol. 2013, Article ID 157636, 15 pages, 2013.
[14]  M. Li and W. Zhao, “On noise,” Mathematical Problems in Engineering, vol. 2012, Article ID 673648, 23 pages, 2012.
[15]  D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” The New England Journal of Medicine, vol. 357, no. 22, pp. 2277–2284, 2007.
[16]  L. Yu, “Radiation dose reduction in computed tomography: techniques and future perspective,” Imaging in Medicine, vol. 1, no. 1, pp. 65–84, 2009.
[17]  J. Weidemann, G. Stamm, M. Galanski, and M. Keberle, “Comparison of the image quality of various fixed and dose modulated protocols for soft tissue neck CT on a GE Lightspeed scanner,” European Journal of Radiology, vol. 69, no. 3, pp. 473–477, 2009.
[18]  M. K. Kalra, M. M. Maher, M. A. Blake et al., “Detection and characterization of lesions on low-radiation-dose abdominal CT images postprocessed with noise reduction filters,” Radiology, vol. 232, no. 3, pp. 791–797, 2004.
[19]  J. C. Giraldo, Z. S. Kelm, L. S. Guimaraes et al., “Comparative study of two image space noise reduction methods for computed tomography: bilateral filter and nonlocal means,” in Proceedings of the Conference Proceedings IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 3529–3532, 2009.
[20]  A. Manduca, L. Yu, J. D. Trzasko et al., “Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT,” Medical Physics, vol. 36, no. 11, pp. 4911–4919, 2009.
[21]  N. Mail, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray, “The influence of bowtie filtration on cone-beam CT image quality,” Medical Physics, vol. 36, no. 1, pp. 22–32, 2009.
[22]  Z. Liao, S. Hu, and W. Chen, “Determining neighborhoods of image pixels automatically for adaptive image denoising using nonlinear time series analysis,” Mathematical Problems in Engineering, vol. 2010, Article ID 914564, 14 pages, 2010.
[23]  H. Lu, I.-T. Hsiao, X. Li, and Z. Liang, “Noise properties of low-dose CT projections and noise treatment by scale transformations,” in Proceedings of the IEEE Nuclear Science Symposium Conference Record, pp. 1662–1666, November 2001.
[24]  J. Xu and B. M. W. Tsui, “Electronic noise modeling in statistical iterative reconstruction,” IEEE Transactions on Image Processing, vol. 18, no. 6, pp. 1228–1238, 2009.
[25]  I. A. Elbakri and J. A. Fessler, “Statistical image reconstruction for polyenergetic X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 21, no. 2, pp. 89–99, 2002.
[26]  J. Wang, H. Lu, J. Wen, and Z. Liang, “Multiscale penalized weighted least-squares sinogram restoration for low-dose X-ray computed tomography,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 3, pp. 1022–1031, 2008.
[27]  J. Wang, T. Li, H. Lu, and Z. Liang, “Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 25, no. 10, pp. 1272–1283, 2006.
[28]  Y. Chen, W. Chen, X. Yin et al., “Improving low-dose abdominal CT images by weighted intensity averaging over large-scale neighborhoods,” European Journal of Radiology, vol. 80, no. 2, pp. e42–e49, 2011.
[29]  M. D. Ortigueira and F. Coito, “From differences to derivatives,” Fractional Calculus and Applied Analysis, vol. 7, no. 4, pp. 459–471, 2004.
[30]  K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413