全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry

DOI: 10.1155/2013/892361

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( ) in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( ) is proportional to the expansion ( ). This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed. 1. Introduction Bianchi type II space time successfully explains the initial stage of evolution of universe. Asseo and Sol [1] have given the importance of Bianchi type II space time for the study of universe. The string theory is useful to describe an event at the early stage of evolution of universe in a lucid way. Cosmic strings play a significant role in the structure formation and evolution of universe. The presence of string in the early universe has been explained by Kibble [2], Vilenkin [3], and Zel’dovich [4] using grand unified theories. These strings have stress energy and are classified as massive and geometric strings. The pioneer work in the formation of energy momentum tensor for classical massive strings is due to Letelier [5] who explained that the massive strings are formed by geometric strings (Stachel [6]) with particle attached along its extension. Letelier [5] first used this idea in obtaining some cosmological solutions for massive string for Bianchi type I and Kantowski-Sachs space-times. Many authors’ namely, Banerjee et al. [7], Tikekar and Patel [8, 9], Wang [10], and Bali et al. [11–14], have investigated string cosmological models in different contexts. Einstein introduced general theory of relativity to describe gravitation in terms of geometry and it helped him to geometrize other physical fields. Motivated by the successful attempt of Einstein, Weyl [15] made one of the best attempts to generalize Riemannian geometry to unify gravitation and electromagnetism. Unfortunately Weyl’s theory was not accepted due to nonintegrability of length. Lyra [16] proposed a modification in Riemannian geometry by introducing gauge function into the structureless manifold. This modification removed the main obstacle of the Weyl theory [15]. Sen [17] formulated a new scalar tensor theory of gravitation and constructed an analogue of Einstein field equations based on Lyra

References

[1]  E. Asseo and H. Sol, “Extragalatic magnetic fields,” Physics Reports, vol. 148, no. 6, pp. 307–436, 1987.
[2]  T. W. B. Kibble, “Topology of cosmic domains and strings,” Journal of Physics A, vol. 9, no. 8, pp. 1387–1398, 1976.
[3]  A. Vilenkin, “Cosmic strings,” Physical Review D, vol. 24, no. 8, pp. 2082–2089, 1981.
[4]  Y. B. Zel’dovich, “A hypothesis, unifying the structure and the entropy of the universe,” Monthly Notices of the Royal Astronomical Society, vol. 160, pp. 1–3, 1972.
[5]  P. S. Letelier, “String cosmologies,” Physical Review D, vol. 28, no. 10, pp. 2414–2419, 1983.
[6]  J. Stachel, “Thickening the string. I. The string perfect dust,” Physical Review D, vol. 21, no. 8, pp. 2171–2181, 1980.
[7]  A. Banerjee, A. K. Sanyal, and S. Chakraborty, “String cosmology in Bianchi I space-time,” Pramana, vol. 34, no. 1, pp. 1–11, 1990.
[8]  R. Tikekar and L. K. Patel, “Some exact solutions of string cosmology in Bianchi III space-time,” General Relativity and Gravitation, vol. 24, no. 4, pp. 397–404, 1992.
[9]  R. Tikekar and L. K. Patel, “Some exact solutions in Bianchi VI string cosmology,” Pramana, vol. 42, no. 6, pp. 483–489, 1994.
[10]  X. Wang, “Bianchi type-III string cosmological model with bulk viscosity and magnetic field,” Chinese Physics Letters, vol. 23, no. 7, pp. 1702–1704, 2006.
[11]  R. Bali and R. D. Upadhaya, “L.R.S. Bianchi type I string dust magnetized cosmological models,” Astrophysics and Space Science, vol. 283, no. 1, pp. 97–108, 2003.
[12]  R. Bali and A. Anjali, “Bianchi type I magnetized string cosmological model in general relativity,” Astrophysics and Space Science, vol. 302, no. 1–4, pp. 201–205, 2006.
[13]  R. Bali and D. K. Singh, “Bianchi type-V bulk viscous fluid string dust cosmological model in general relativity,” Astrophysics and Space Science, vol. 300, no. 4, pp. 387–394, 2005.
[14]  R. Bali, U. K. Pareek, and A. Pradhan, “Bianchi type-I massive string magnetized barotropic perfect fluid cosmological model in general relativity,” Chinese Physics Letters, vol. 24, no. 8, pp. 2455–2458, 2007.
[15]  H. Weyl, Gravitation and Electricit?t, pp. 465–475, Sitzungsberichte der K?niglich Preussischen Akademie der Wissenschaften, Berlin, Germany, 1918.
[16]  G. Lyra, “über eine Modifikation der Riemannschen Geometrie,” Mathematische Zeitschrift, vol. 54, pp. 52–64, 1951.
[17]  D. K. Sen, “A static cosmological model,” Zeitschrift für Physik, vol. 149, pp. 311–323, 1957.
[18]  W. D. Halford, “Scalar-tensor theory of gravitation in a Lyra manifold,” Journal of Mathematical Physics, vol. 13, no. 11, pp. 1699–1703, 1972.
[19]  A. Beesham, “Vacuum friedmann cosmology based on Lyra's manifold,” Astrophysics and Space Science, vol. 127, no. 1, pp. 189–191, 1986.
[20]  T. Singh and G. P. Singh, “Bianchi type-I cosmological models in Lyra's geometry,” Journal of Mathematical Physics, vol. 32, no. 9, pp. 2456–2458, 1992.
[21]  S. Chakraborty and A. Ghosh, “Generalized scalar tensor theory in four and higher dimension,” International Journal of Modern Physics D, vol. 9, no. 5, pp. 543–549, 2000.
[22]  F. Rahaman and J. K. Bera, “Higher dimensional cosmological model in Lyra geometry,” International Journal of Modern Physics D, vol. 10, no. 5, pp. 729–733, 2001.
[23]  A. Pradhan and A. K. Vishwakarma, “A new class of LRS Bianchi type-I cosmological models in Lyra geometry,” Journal of Geometry and Physics, vol. 49, no. 3-4, pp. 332–342, 2004.
[24]  A. Pradhan, V. K. Yadav, and I. Chakrabarty, “Bulk viscous FRW cosmology in Lyra geometry,” International Journal of Modern Physics D, vol. 10, no. 3, pp. 339–349, 2001.
[25]  R. Bali and N. K. Chandnani, “Bianchi type-I cosmological model for perfect fluid distribution in Lyra geometry,” Journal of Mathematical Physics, vol. 49, no. 3, Article ID 032502, 8 pages, 2008.
[26]  R. Bali and N. K. Chandnani, “Bianchi type-III bulk viscous dust filled universe in Lyra geometry,” Astrophysics and Space Science, vol. 318, no. 3-4, pp. 225–229, 2009.
[27]  S. Ram, M. Zeyauddin, and C. P. Singh, “Bianchi type V cosmological models with perfect fluid and heat conduction in Lyra's geometry,” International Journal of Modern Physics A, vol. 23, no. 31, pp. 4991–5005, 2008.
[28]  R. Bali, L. K. Gupta, and N. K. Chandnani, “Bianchi type I string dust magnetized cosmological models in Lyra geometry,” Communications in Theoretical Physics, vol. 54, pp. 197–202, 2010.
[29]  A. Lichnerowicz, Relativistic Hydrodynamics and Magneto Hydrodynamics, Benjamin, Elmsford, NY, USA, 1967.
[30]  R. Maartens, “Cosmological magnetic fields,” Pramana, vol. 55, no. 4, pp. 575–583, 2000.
[31]  K. A. Bronnikov, E. N. Chudayeva, and G. N. Shikin, “Magneto-dilatonic Bianchi-I cosmology: isotropization and singularity problems,” Classical and Quantum Gravity, vol. 21, no. 14, pp. 3389–3403, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413