全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Distance-Based Routing Strategy for Traffic Transport in Spatial Networks

DOI: 10.1155/2013/879651

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is well known that routing strategies based on global topological information is not a good choice for the enhancement of traffic throughput in large-scale networks due to the heavy communication cost. On the contrary, acquiring spatial information, such as spatial distances among nodes, is more feasible. In this paper, we propose a novel distance-based routing strategy in spatial scale-free networks, called LDistance strategy. The probability of establishing links among nodes obeys the power-law in the spatial network under study. Compared with the LDegree strategy (Wang et al., 2006) and the mixed strategy (a strategy combining both greedy routing strategy and random routing strategy), results show that our proposed LDistance strategy can further enhance traffic capacity. Besides, the LDistance strategy can also achieve a much shorter delivering time than the LDegree strategy. Analyses reveal that the superiority of our strategy is mainly due to the interdependent relationship between topological and spatial characteristics in spatial scale-free networks. Furthermore, along transporting path in the LDistance strategy, the spatial distance to destination decays more rapidly, and the degrees of routers are higher than those in the LDegree strategy. 1. Introduction In the last few years, the analysis and modelling of dynamics in networked systems have attracted much attention in the field of theoretic physics [1–3]. Such networked systems include the Internet, high-way networks, airline networks, and social, biology, and some other infrastructure networks. In some real networks such as the Internet [4], electric-power grid [5], and airline networks [6], each node has its individual precise position in the space and the spatial distances among nodes cannot be arbitrarily neglected. Moreover, the spatial distances among nodes are not identical. In such networks, the network is embedded into a space with some (e.g., Euclidean) metric. This is why people usually call these networks spatial networks [7]. Until now, most previous work only focused on the effects of topological characteristics on dynamical occurring in networks, while the effects of spatial characteristics begin to attract much attention only in recent years. It has been reported that in real networks, the topological and spatial characteristics are closely related [8]. Two nodes close to each other are likely to be connected even though both nodes have low degrees, whereas there may not exist any link between two high-degree nodes far away from each other. For example, in an airline

References

[1]  R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97, 2002.
[2]  S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of networks,” Advances in Physics, vol. 51, no. 4, pp. 1079–1187, 2002.
[3]  M. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.
[4]  R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach, Cambridge University Press, Cambridge, UK, 2004.
[5]  R. Albert, I. Albert, and G. L. Nakarado, “Structural vulnerability of the North American power grid,” Physical Review E, vol. 69, no. 2, Article ID 025103, 4 pages, 2004.
[6]  R. Guimerà, S. Mossa, A. Turtschi, and L. A. N. Amaral, “The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 7794–7799, 2005.
[7]  M. Barthélemy, “Spatial networks,” Physics Reports, vol. 499, no. 1-3, pp. 1–101, 2011.
[8]  M. ángeles Serrano, D. Krioukov, and M. Bogu?á, “Self-similarity of complex networks and hidden metric spaces,” Physical Review Letters, vol. 100, no. 7, Article ID 078701, 2008.
[9]  H. Yang, Y. Nie, A. Zeng, Y. Fan, Y. Hu, and Z. Di, “Scaling properties in spatial networks and their effects on topology and traffic dynamics,” Europhysics Letters, vol. 89, no. 5, Article ID 58002, 2010.
[10]  B.-H. Wang and T. Zhou, “Traffic flow and efficient routing on scale-free networks: a survey,” Journal of the Korean Physical Society, vol. 50, no. 1 I, pp. 134–141, 2007.
[11]  S. Chen, W. Huang, C. Cattani, and G. Altieri, “Traffic dynamics on complex networks: a survey,” Mathematical Problems in Engineering, vol. 2012, Article ID 732698, 2012.
[12]  R. Pastor-Satorras, A. Vázquez, and A. Vespignani, “Dynamical and correlation properties of the internet,” Physical Review Letters, vol. 87, no. 25, Article ID 258701, pp. 258701/1–258701/4, 2001.
[13]  W.-X. Wang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie, and T. Zhou, “Traffic dynamics based on local routing protocol on a scale-free network,” Physical Review E, vol. 73, no. 2, Article ID 026111, 2006.
[14]  Z. Y. Chen and X. F. Wang, “Effects of network structure and routing strategy on network capacity,” Physical Review E, vol. 73, no. 3, Article ID 036107, 2006.
[15]  W. X. Wang, C. Y. Yin, G. Yan, and B. H. Wang, “Integrating local static and dynamic information for routing traffic,” Physical Review E, vol. 74, no. 1, Article ID 016101, 2006.
[16]  P. Echenique, J. Gómez-Garde?es, and Y. Moreno, “Improved routing strategies for Internet traffic delivery,” Physical Review E, vol. 70, no. 5, Article ID 056105, pp. 1–56105, 2004.
[17]  P. Echenique, J. Gómez-garde?es, and Y. Moreno, “Dynamics of jamming transitions in complex networks,” Europhysics Letters, vol. 71, no. 2, pp. 325–331, 2005.
[18]  Z. Wu, G. Peng, W. Wong, and K. Yeung, “Improved routing strategies for data traffic in scale-free networks,” Journal of Statistical Mechanics, Article ID P11002, 2008.
[19]  W. Huang and T. W. S. Chow, “Investigation of both local and global topological ingredients on transport efficiency in scale-free networks,” Chaos, vol. 19, no. 4, Article ID 043124, 2009.
[20]  B. Danila, Y. Yu, J. A. Marsh, and K. E. Bassler, “Optimal transport on complex networks,” Physical Review E, vol. 74, no. 4, Article ID 046106, 2006.
[21]  B. Danila, Y. Yu, J. A. Marsh, and K. E. Bassler, “Transport optimization on complex networks,” Chaos, vol. 17, no. 2, Article ID 026102, 9 pages, 2007.
[22]  G. Yan, T. Zhou, B. Hu, Z. Q. Fu, and B. H. Wang, “Efficient routing on complex networks,” Physical Review E, vol. 73, no. 4, Article ID 046108, 2006.
[23]  M. Bogu?á, D. Krioukov, and K. C. Claffy, “Navigability of complex networks,” Nature Physics, vol. 5, no. 1, pp. 74–80, 2009.
[24]  M. Bogu?á and D. Krioukov, “Navigating ultrasmall worlds in ultrashort time,” Physical Review Letters, vol. 102, no. 5, Article ID 058701, 2009.
[25]  K. Tutschku and P. Tran-Gia, “Spatial traffic estimation and characterization for mobile communication network design,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 5, pp. 804–811, 1998.
[26]  W. Li, M. Canini, A. W. Moore, and R. Bolla, “Efficient application identification and the temporal and spatial stability of classification schema,” Computer Networks, vol. 53, no. 6, pp. 790–809, 2009.
[27]  S. Uhlig, “On the complexity of Internet traffic dynamics on its topology,” Telecommunication Systems, vol. 43, no. 3-4, pp. 167–180, 2010.
[28]  R. J. Adler, R. E. Feldman, and M. S. Taqqu, Practical Guide to Heavy Tails: Statistical Techniques and Applications, Birkh?user, Boston, Mass, USA, 1998.
[29]  M. Li and W. Zhao, “On noise,” Mathematical Problems in Engineering, vol. 2012, Article ID 673648, 23 pages, 2012.
[30]  R. G. Clegg, C. Di Cairano-Gilfedder, and S. Zhou, “A critical look at power law modelling of the Internet,” Computer Communications, vol. 33, no. 3, pp. 259–268, 2010.
[31]  A. Arenas, A. Díaz-Guilera, and R. Guimerà, “Communication in networks with hierarchical branching,” Physical Review Letters, vol. 86, no. 14, pp. 3196–3199, 2001.
[32]  M. E. Newman, “Assortative mixing in networks,” Physical Review Letters, vol. 89, no. 20, Article ID 208701, 2002.
[33]  M. Li and W. Zhao, “Representation of a stochastic traffic bound,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 9, pp. 1368–1372, 2010.
[34]  M. Li, W. Zhao, and C. Cattani, “Delay bound: fractal traffic passes through network servers,” Mathematical Problems in Engineering, vol. 2013, Article ID 157636, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413