全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interval Wavelet Numerical Method on Fokker-Planck Equations for Nonlinear Random System

DOI: 10.1155/2013/651357

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Fokker-Planck-Kolmogorov (FPK) equation governs the probability density function (p.d.f.) of the dynamic response of a particular class of linear or nonlinear system to random excitation. An interval wavelet numerical method (IWNM) for nonlinear random systems is proposed using interval Shannon-Gabor wavelet interpolation operator. An FPK equation for nonlinear oscillators and a time fractional Fokker-Planck equation are taken as examples to illustrate its effectiveness and efficiency. Compared with the common wavelet collocation methods, IWNM can decrease the boundary effect greatly. Compared with the finite difference method for the time fractional Fokker-Planck equation, IWNM can improve the calculation precision evidently. 1. Introduction The Fokker-Planck equation describes the time evolution of the probability density function of the velocity of a particle, and can be generalized to other observables as well. It is named after Adriaan Fokker and Max Planck and is also known as the Kolmogorov forward equation (diffusion), named after Andrey Kolmogorov, who first introduced it in a 1931 paper. When applied to particle position distributions, it is better known as the Smoluchowski equation. The case with zero diffusion is known in statistical mechanics as Liouville equation. In order to describe subdiffusive behavior of a particle under the combined influence of external nonlinear force field and a Boltzmann thermal heat bath, Metzler et al. introduced a fractional Fokker-Planck equation (FFPE) which was shown to obey generalized Einstein relations, and its stationary solution is the Boltzmann distribution [1]. Many methods for calculating nonlinear random response have been developed by numerous scholars over a long period of time. One type of these methods is the diffuseness process theory method, and the primarily one is Fokker-Planck equation method. In practice, the most difficult problem of using Fokker-Planck equation method is how to solve the equation. For general nonlinear system, it is very difficult to obtain the exact solution. Various numerical methods have been used to solve the Fokker-Planck equation, such as the weighted residual method [2], the finite element method [3], and the path integral method [4] and so on. The Galerkin method for the numerical solution of the stationary Fokker-Planck equation developed by Bhandari and Sherrer is based on taking multiple Hermite polynomial as joint probability density, but the rate of convergence of this method is slow for strong nonlinear system. Based on Galerkin method, a finite

References

[1]  R. Metzler, E. Barkai, and J. Klafter, “Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach,” Physical Review Letters, vol. 82, no. 18, pp. 3563–3567, 1999.
[2]  R. G. Bhandari and R. E. Sheerer, “Random vibrations in discrete nonlinear dynamic systems,” Journal Mechanical Engineering Science, vol. 10, no. 2, pp. 168–174, 1968.
[3]  R. S. Langley, “A finite element method for the statistics of non-linear random vibration,” Journal of Sound and Vibration, vol. 101, no. 1, pp. 41–54, 1985.
[4]  M. F. Wehner and W. G. Wolfer, “Numerical evaluation of path-integral solutions to Fokker-Planck equations,” Physical Review A, vol. 27, no. 5, pp. 2663–2670, 1983.
[5]  Z. Senwen, C. Quifu, and Z. Honghui, “Random responses of a two-degree-of-freedom structure with strongly nonlinear coupling and parametric interaction,” Acta Mechanica Sinica, vol. 9, no. 3, pp. 240–250, 1993.
[6]  S. Bertoluzza and G. Naldi, “A wavelet collocation method for the numerical solution of partial differential equations,” Applied and Computational Harmonic Analysis, vol. 3, no. 1, pp. 1–9, 1996.
[7]  C. Cattani and L. M. S. Ruiz, “Discrete differential operators in multidimensional haar wavelet spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 2004, no. 44, pp. 2347–2355, 2004.
[8]  C. Cattani, “Harmonic wavelets towards the solution of nonlinear PDE,” Computers and Mathematics with Applications, vol. 50, no. 8-9, pp. 1191–1210, 2005.
[9]  C. Cattani, “Connection coefficients of Shannon wavelets,” Mathematical Modelling and Analysis, vol. 11, no. 2, pp. 117–132, 2006.
[10]  C. Cattani, “Shannon wavelets theory,” Mathematical Problems in Engineering, vol. 2008, Article ID 164808, 24 pages, 2008.
[11]  C. Cattani, “Shannon wavelets for the solution of integrodifferential equations,” Mathematical Problems in Engineering, vol. 2010, Article ID 408418, 22 pages, 2010.
[12]  S. McWilliam, D. J. Knappett, and C. H. J. Fox, “Numerical solution of the stationary FPK equation using Shannon wavelets,” Journal of Sound and Vibration, vol. 232, no. 2, pp. 405–430, 2000.
[13]  D. K. Hoffman, G. W. Wei, D. S. Zhang, and D. J. Kouri, “Shannon-Gabor wavelet distributed approximating functional,” Chemical Physics Letters, vol. 287, no. 1-2, pp. 119–124, 1998.
[14]  G. W. Wei, “Quasi wavelets and quasi interpolating wavelets,” Chemical Physics Letters, vol. 296, no. 3-4, pp. 215–222, 1998.
[15]  G. W. Wei, “A new algorithm for solving some mechanical problems,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 15–17, pp. 2017–2030, 2001.
[16]  G. W. Wei, “A unified approach for the solution of the Fokker-Planck equation,” Journal of Physics A, vol. 33, no. 27, pp. 4935–4953, 2000.
[17]  Z. Shi, G. W. Wei, D. J. Kouri, D. K. Hoffman, and Z. Bao, “Lagrange wavelets for signal processing,” IEEE Transactions on Image Processing, vol. 10, no. 10, pp. 1488–1508, 2001.
[18]  S.-L. Mei, H.-L. Lv, and Q. Ma, “Construction of interval wavelet based on restricted variational principle and its application for solving differential equations,” Mathematical Problems in Engineering, vol. 2008, Article ID 629253, 14 pages, 2008.
[19]  L. Zhang, Y. Yang, and S. Mei, “Wavelet precise integration method on image denoising,” Transactions of the Chinese Society of Agricultural Machinery, vol. 37, no. 7, pp. 109–112, 2006.
[20]  S.-L. Mei, C.-J. Du, and S.-W. Zhang, “Linearized perturbation method for stochastic analysis of a rill erosion model,” Applied Mathematics and Computation, vol. 200, no. 1, pp. 289–296, 2008.
[21]  S.-L. Pang, “Wavelet numerical method for nonlinear random system,” Transactions of the Chinese Society of Agricultural Machinery, vol. 38, no. 3, pp. 168–170, 2007.
[22]  H.-H. Yan, “Adaptive wavelet precise integration method for nonlinear Black-Scholes model based on variational iteration method,” Abstract and Applied Analysis, vol. 2013, Article ID 735919, 6 pages, 2013.
[23]  X. Ruyi, “Wavelet-based homotopy analysis method for nonlinear matrix system and its application in burgers equation,” Mathematical Problems in Engineering, vol. 2013, Article ID 982810, 7 pages, 2013.
[24]  S.-L. Mei, “HAM-based adaptive multi-scale meshless method for burgers equation,” Journal of Applied Mathematics, vol. 2013, Article ID 248246, 10 pages, 2013.
[25]  S.-L. Mei, C.-J. Du, and S.-W. Zhang, “Asymptotic numerical method for multi-degree-of-freedom nonlinear dynamic systems,” Chaos, Solitons and Fractals, vol. 35, no. 3, pp. 536–542, 2008.
[26]  S.-L. Mei and S.-W. Zhang, “Coupling technique of variational iteration and homotopy perturbation methods for nonlinear matrix differential equations,” Computers and Mathematics with Applications, vol. 54, no. 7-8, pp. 1092–1100, 2007.
[27]  S.-L. Mei, “Construction of target controllable image segmentation model based on homotopy perturbation technology,” Abstract and Applied Analysis, vol. 2013, Article ID 131207, 8 pages, 2013.
[28]  R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,” Physics Report, vol. 339, no. 1, pp. 1–77, 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413