全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Periodic Solution of Fractional Oscillation Equation with Periodic Input

DOI: 10.1155/2013/869484

Full-Text   Cite this paper   Add to My Lib

Abstract:

The periodic solution of fractional oscillation equation with periodic input is considered in this work. The fractional derivative operator is taken as , where the initial time is ; hence, initial conditions are not needed in the model of the present fractional oscillation equation. With the input of the harmonic oscillation, the solution is derived to be a periodic function of time t with the same circular frequency as the input, and the frequency of the solution is not affected by the system frequency c as is affected in the integer-order case. These results are similar to the case of a damped oscillation with a periodic input in the integer-order case. Properties of the periodic solution are discussed, and the fractional resonance frequency is introduced. 1. Introduction Fractional calculus has been used in the mathematical description of real problems arising in different fields of science. It covers the fields of viscoelasticity, anomalous diffusion, analysis of feedback amplifiers, capacitor theory, fractances, generalized voltage dividers, electrode-electrolyte interface models, fractional multipoles, fitting of experimental data, and so on [1–5]. Scientists and engineers became aware of the fact that the description of some phenomena is more accurate when the fractional derivative is used. In recent years, even fractional-order models of happiness [6] and love [7] have been developed, and they are claimed to give a better representation than the integer-order dynamical systems approach. The fractional differential and integral operators have been extensively applied to the field of viscoelasticity [8]. The use of fractional calculus for the mathematical modelling of viscoelastic materials is quite natural. The main reasons for the theoretical development are the wide use of polymers in various fields of engineering. The theorem of existence and uniqueness of solutions for fractional differential equations has been presented in [1, 2, 9, 10]. The theory and applications of fractional differential equations are much involved [1–5, 11–17]. Fractional oscillation equations were introduced and discussed by Caputo [18], Bagley and Torvik [19], Beyer and Kempfle [20], Mainardi [21], Gorenflo and Mainardi [22], and others. Fractional oscillators and fractional dynamical systems were investigated in [23–28]. Achar et al. [23] and Al-rabtah et al. [24] studied the response characteristics of the fractional oscillator. Li et al. [25] considered the impulse response and the stability behavior of a class of fractional oscillators. Lim et al. [26] established

References

[1]  I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
[2]  A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006.
[3]  F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010.
[4]  D. B?leanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Hackensack, NJ, USA, 2012.
[5]  J. T. Machado, V. Kiryakova, and F. Mainardi, “Recent history of fractional calculus,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1140–1153, 2011.
[6]  L. Song, S. Xu, and J. Yang, “Dynamical models of happiness with fractional order,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 3, pp. 616–628, 2010.
[7]  R. Gu and Y. Xu, “Chaos in a fractional-order dynamical model of love and its control,” in Nonlinear Mathematics for Uncertainty and Its Applications, S. Li, X. Wang, Y. Okazaki, J. Kawabe, T. Murofushi, and L. Guan, Eds., vol. 100 of Advances in Intelligent and Soft Computing, pp. 349–356, Springer, Berlin, Germany, 2011.
[8]  Y. A. Rossikhin and M. V. Shitikova, “Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids,” Applied Mechanics Reviews, vol. 50, no. 1, pp. 15–67, 1997.
[9]  D. B?leanu, O. G. Mustafa, and R. P. Agarwal, “An existence result for a superlinear fractional differential equation,” Applied Mathematics Letters, vol. 23, no. 9, pp. 1129–1132, 2010.
[10]  D. B?leanu and O. G. Mustafa, “On the global existence of solutions to a class of fractional differential equations,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1835–1841, 2010.
[11]  J.-S. Duan, “Time- and space-fractional partial differential equations,” Journal of Mathematical Physics, vol. 46, no. 1, Article ID 013504, pp. 13504–13511, 2005.
[12]  V. Daftardar-Gejji and H. Jafari, “An iterative method for solving nonlinear functional equations,” Journal of Mathematical Analysis and Applications, vol. 316, no. 2, pp. 753–763, 2006.
[13]  G. Wu, “A fractional characteristic method for solving fractional partial differential equations,” Applied Mathematics Letters, vol. 24, no. 7, pp. 1046–1050, 2011.
[14]  H. Jafari, C. M. Khalique, and M. Nazari, “An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation,” Mathematical and Computer Modelling, vol. 55, no. 5-6, pp. 1782–1786, 2012.
[15]  H. Jafari, M. Nazari, D. Baleanu, and C. M. Khalique, “A new approach for solving a system of fractional partial differential equations,” Computers & Mathematics with Applications, vol. 66, no. 5, pp. 838–843, 2013.
[16]  J.-S. Duan, T. Chaolu, and R. Rach, “Solutions of the initial value problem for nonlinear fractional ordinary differential equations by the Rach-Adomian-Meyers modified decomposition method,” Applied Mathematics and Computation, vol. 218, no. 17, pp. 8370–8392, 2012.
[17]  J. S. Duan, R. Rach, D. Baleanu, and A. M. Wazwaz, “A review of the Adomian decomposition method and its applications to fractional differential equations,” Communications in Fractional Calculus, vol. 3, pp. 73–99, 2012.
[18]  M. Caputo, “Linear models of dissipation whose Q is almost frequency independent—part II,” Geophysical Journal of the Royal Astronomical Society, vol. 13, no. 5, pp. 529–539, 1967.
[19]  R. L. Bagley and P. J. Torvik, “A generalized derivative model for an elastomer damper,” The Shock and Vibration Bulletin, vol. 49, no. 2, pp. 135–143, 1979.
[20]  H. Beyer and S. Kempfle, “Definition of physically consistent damping laws with fractional derivatives,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 75, no. 8, pp. 623–635, 1995.
[21]  F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solitons & Fractals, vol. 7, no. 9, pp. 1461–1477, 1996.
[22]  R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., vol. 378 of CISM Courses and Lectures, pp. 223–276, Springer, New York, NY, USA, 1997.
[23]  B. N. N. Achar, J. W. Hanneken, and T. Clarke, “Response characteristics of a fractional oscillator,” Physica A, vol. 309, no. 3-4, pp. 275–288, 2002.
[24]  A. Al-rabtah, V. S. Ertürk, and S. Momani, “Solutions of a fractional oscillator by using differential transform method,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1356–1362, 2010.
[25]  M. Li, S. C. Lim, and S. Chen, “Exact solution of impulse response to a class of fractional oscillators and its stability,” Mathematical Problems in Engineering, vol. 2011, Article ID 657839, 9 pages, 2011.
[26]  S. C. Lim, L. Ming, and L. P. Teo, “Locally self-similar fractional oscillator processes,” Fluctuation and Noise Letters, vol. 7, no. 2, pp. L169–L179, 2007.
[27]  S. C. Lim and L. P. Teo, “The fractional oscillator process with two indices,” Journal of Physics A, vol. 42, no. 6, Article ID 065208, 34 pages, 2009.
[28]  M. Li, “Approximating ideal filters by systems of fractional order,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 365054, 6 pages, 2012.
[29]  E. Kaslik and S. Sivasundaram, “Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions,” Nonlinear Analysis: Real World Applications, vol. 13, no. 3, pp. 1489–1497, 2012.
[30]  J.-S. Duan, Z. Wang, Y.-L. Liu, and X. Qiu, “Eigenvalue problems for fractional ordinary differential equations,” Chaos, Solitons & Fractals, vol. 46, pp. 46–53, 2013.
[31]  R. P. Agarwal, B. de Andrade, and C. Cuevas, “Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations,” Nonlinear Analysis: Real World Applications, vol. 11, no. 5, pp. 3532–3554, 2010.
[32]  C. Li and Y. Ma, “Fractional dynamical system and its linearization theorem,” Nonlinear Dynamics, vol. 71, no. 4, pp. 621–633, 2013.
[33]  B. Davies, Integral Transforms and Their Applications, Springer, New York, NY, USA, 3rd edition, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413