全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Bernstein-Type Theorems in Semi-Riemannian Warped Products

DOI: 10.1155/2013/959143

Full-Text   Cite this paper   Add to My Lib

Abstract:

Complete spacelike hypersurfaces immersed in semi-Riemannian warped products are investigated. By using a technique according to Yau (1976) and a reasonable restriction on the mean curvature of the hypersurfaces, we obtain some new Bernstein-type theorems which extend some known results proved by Camargo et al. (2011) and Colares and Lima (2012). 1. Introduction In the present paper, we are interested in the study of the complete spacelike hypersurfaces immersed in semi-Riemannian warped product manifolds, in particular, in steady state-type spacetime and hyperbolic-type space. Before giving details of our main results, we first present a brief outline of some recent papers containing theorems related to ours. By using a restriction on the height function of a complete spacelike hypersurface, Caminha and de Lima [1] obtained some unique results concerning complete spacelike hypersurfaces with constant mean curvature immersed in steady state space and hyperbolic space, respectively. Later, Albujer and Alías [2] proved that on a complete spacelike hypersurface the constant mean curvature must be identically 1, provided that such a hypersurface is bounded away from the infinity of the steady state space. For some other Bernstein-type results concerning constant mean curvature, we refer the reader to some recent papers by Albujer et al. [3, 4] and Aquino and de Lima [5]. Also, by using the well known result according to Yau [6], Camargo et al. in [7] obtained some Bernstein-type results concerning complete spacelike hypersurfaces, in steady state-type and hyperbolic-type space. Noticing that in their paper the mean curvature of the complete spacelike hypersurface need not be a constant. de Lima in [8] obtained a new Bernstein-type theorem concerning complete spacelike hypersurfaces in hyperbolic space with the bounded mean curvature (not necessarily constant) and a restriction on the normal angle. In this paper, following [9, 10] we shall consider the Laplacian of the integral of the warping function. In fact, by using a technique provided by Yau in [6] and supposing an appropriate restriction on the mean curvature, we obtain the following Bernstein-type theorems. Theorem 1. Let be a generalized Robertson-Walker spacetime whose fiber is a complete Riemannian manifold. Let be a complete and connected spacelike hypersurface with the mean curvature satisfying If has integrable norm on , then is a slice of . The Riemannian version of Theorem 1 is also presented as follows. Theorem 2. Let be a Riemannian warped product whose fiber is a complete Riemannian

References

[1]  A. Caminha and H. F. de Lima, “Complete vertical graphs with constant mean curvature in semi-Riemannian warped products,” Bulletin of the Belgian Mathematical Society. Simon Stevin, vol. 16, no. 1, pp. 91–105, 2009.
[2]  A. L. Albujer and L. J. Alías, “Spacelike hypersurfaces with constant mean curvature in the steady state space,” Proceedings of the American Mathematical Society, vol. 137, no. 2, pp. 711–721, 2009.
[3]  A. L. Albujer, F. E. C. Camargo, and H. F. de Lima, “Complete spacelike hypersurfaces with constant mean curvature in ,” Journal of Mathematical Analysis and Applications, vol. 368, no. 2, pp. 650–657, 2010.
[4]  A. L. Albujer, F. E. C. Camargo, and H. F. de Lima, “Complete spacelike hypersurfaces in a Robertson-Walker spacetime,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 151, no. 2, pp. 271–282, 2011.
[5]  C. P. Aquino and H. F. de Lima, “On the rigidity of constant mean curvature complete vertical graphs in warped products,” Differential Geometry and its Applications, vol. 29, no. 4, pp. 590–596, 2011.
[6]  S. T. Yau, “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry,” Indiana University Mathematics Journal, vol. 25, no. 7, pp. 659–670, 1976.
[7]  F. Camargo, A. Caminha, and H. de Lima, “Bernstein-type theorems in semi-Riemannian warped products,” Proceedings of the American Mathematical Society, vol. 139, no. 5, pp. 1841–1850, 2011.
[8]  H. F. de Lima, “Rigidity theorems in the hyperbolic space,” Bulletin of the Korean Mathematical Society, vol. 50, no. 1, pp. 97–103, 2013.
[9]  L. J. Alías and A. G. Colares, “Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 143, no. 3, pp. 703–729, 2007.
[10]  Y. Wang and X. Liu, “On complete spacelike hypersurfaces in a semi-Riemannian warped product,” Journal of Applied Mathematics, vol. 2013, Article ID 757041, 8 pages, 2013.
[11]  L. J. Alías, A. Romero, and M. Sánchez, “Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes,” General Relativity and Gravitation, vol. 27, no. 1, pp. 71–84, 1995.
[12]  B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, NY, USA, 1983.
[13]  L. J. Alías, A. Romero, and M. Sánchez, “Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems,” The Tohoku Mathematical Journal, vol. 49, no. 3, pp. 337–345, 1997.
[14]  S. Montiel, “Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds,” Indiana University Mathematics Journal, vol. 48, no. 2, pp. 711–748, 1999.
[15]  S. Montiel, “Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes,” Mathematische Annalen, vol. 314, no. 3, pp. 529–553, 1999.
[16]  C. P. Aquino and H. F. de Lima, “Uniqueness of complete hypersurfaces with bounded higher order mean curvatures in semi-Riemannian warped products,” Glasgow Mathematical Journal, vol. 54, no. 1, pp. 201–212, 2012.
[17]  A. G. Colares and H. F. de Lima, “Some rigidity theorems in semi-Riemannian warped products,” Kodai Mathematical Journal, vol. 35, no. 2, pp. 268–282, 2012.
[18]  H. Bondi and T. Gold, “On the generation of magnetism by fluid motion,” Royal Astronomical Society. Monthly Notices, vol. 108, pp. 252–270, 1948.
[19]  F. Hoyle, “A new model for the expanding universe,” Royal Astronomical Society. Monthly Notices, vol. 108, pp. 372–382, 1948.
[20]  L. J. Alías and M. Dajczer, “Uniqueness of constant mean curvature surfaces properly immersed in a slab,” Commentarii Mathematici Helvetici, vol. 81, no. 3, pp. 653–663, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413