全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Enhanced Fractional Order Model of Ionic Polymer-Metal Composites Actuator

DOI: 10.1155/2013/717659

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ionic polymer-metal composites (IPMCs) are electroactive polymers which transform the mechanical forces into electric signals and vice versa. The paper proposes an enhanced fractional order transfer function (FOTF) model for IPMC membrane working as actuator. In particular the IPMC model has been characterized through experimentation, and a more detailed structure of its FOTF has been determined via optimization routines. The minimization error was attained comparing the simple genetic algorithms with the simplex method and considering the error between the experimental and model derived frequency responses as cost functions. 1. Introduction In the last decade a new breed of polymers, known as electroactive polymers or more commonly EAPs, has emerged thanks to their electroactive capabilities [1]. Ionic polymer-metal composites [2] belong to this material class. They bend if they are solicited by an external electric field and they act as motion sensor if an external deformation is applied. They are characterized by several interesting properties such as high compliance, lightness, and softness. IPMCs exploit ionic polymers for electrochemical and mechanical transduction and noble metals as electrodes, and they represent a valid alternative to the classic actuators and/or sensors. They can be cut in any shape and size, they are characterized by large deformations applying very low level of voltage, and they can work both in a humid or in a wet environment. These properties make them particularly attractive for possible applications in very different fields such as robotics, aerospace, and biomedicine [3, 4]. An intense research has been currently carried out to improve the IPMC performances in terms of power consumption, developed force, and deformation [5]. Moreover the research efforts have been spent in finding improved models able to predict the IPMCs behavior both as actuators and sensors [6]. In the literature several models describing the IPMC as actuator can be found. In detail, they can be divided into three categories: white box, black box, and grey box. The first category, called white box, or physical models, is based on the underlying physical mechanisms of the IPMC to develop a system of equations that fully describes the device response [7]. Numerical implementation via methods as finite element analysis can be found in the literature [8]. Some difficulties are presented with physical modeling of IPMC transducers, such as a complete knowledge of the chemical and/or physical mechanisms involved in the electromechanical transduction and the

References

[1]  Y. Bar-Cohen, “Electro-active polymers: current capabilities and challenges,” in Proceedings of the SPIE Smart Structures and Materials Symposium, EAPAD Conference, pp. 4695–4702, San Diego, Calif, USA, 2002.
[2]  M. Shahinpoor and K. J. Kim, “Ionic polymer-metal composites—I. Fundamentals,” Smart Materials and Structures, vol. 10, no. 4, pp. 819–833, 2001.
[3]  M. Shahinpoor and K. J. Kim, “Ionic polymer-metal composites—4. Industrial and medical applications,” Smart Materials and Structures, vol. 14, no. 1, pp. 197–214, 2005.
[4]  C. Bonomo, P. Brunetto, L. Fortuna, P. Giannone, S. Graziani, and S. Strazzeri, “A tactile sensor for biomedical applications based on IPMCs,” IEEE Sensors Journal, vol. 8, no. 8, pp. 1486–1493, 2008.
[5]  A. Punning, M. Anton, M. Kruusmaa, and A. Aabloo, “An engineering approach to reduced power consumption of IPMC (Ion-Polymer Metal Composite) actuators,” in Proceedings of the 12th International Conference on Advanced Robotics (ICAR '05), pp. 856–863, July 2005.
[6]  D. J. Leo, K. Farinholt, and T. Wallmersperger, “Computational models of ionic transport and electromechanical transduction in ionomeric polymer transducers,” in Proceedings of the Smart Structures and Materials, Electroactive Polymer Actuators and Devices (EAPAD '05), pp. 170–181, March 2005.
[7]  S. Nemat-Nasser and J. Y. Li, “Electromechanical response of ionic polymer-metal composites,” Journal of Applied Physics, vol. 87, no. 7, pp. 3321–3331, 2000.
[8]  R. Caponetto, V. De Luca, S. Graziani, F. Sapuppo, and E. Umana, “A multi-physics model of an IPMC actuator in the electrical, chemical, mechanical and thermal domains,” in Proceedings of the SMACD, Seville, Spain, 2012.
[9]  R. Kanno, A. Kurata, and M. Hattori, “Characteristics and modeling of ICPF actuator,” in Proceedings of the Japan-USA Symposium on Flexible Automation, vol. 2, pp. 691–698, 1994.
[10]  Y. Xiao and K. Bhattacharya, “Modeling electromechanical properties of ionic polymers,” in Proceedings of the Electroactive Polymer, Actuators and Devices-Smart Structures and Materials, pp. 292–300, March 2001.
[11]  P. Brunetto, L. Fortuna, P. Giannone, S. Graziani, and S. Strazzeri, “Static and dynamic characterization of the temperature and humidity influence on IPMC actuators,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 4, pp. 893–908, 2010.
[12]  R. Caponetto, G. Dongola, L. Fortuna, S. Graziani, and S. Strazzeri, “A fractional model for IPMC actuators,” in Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, pp. 2103–2107, May 2008.
[13]  J. A. Nelder and R. Mead, “A simplex method for function minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–313, 1965.
[14]  J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM Journal on Optimization, vol. 9, no. 1, pp. 112–147, 1999.
[15]  D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, 1989.
[16]  Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin, Germany, 2nd edition, 1994.
[17]  K. B. Oldham and J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover Books on Mathematics, 2006.
[18]  I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press Inc., San Diego, CA, 1999.
[19]  R. Caponetto, G. Dongola, L. Fortuna, and I. Petras, Fractional Order Systems: Modelling and Control Applications, vol. 72, Nonlinear Science, Series A, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413