全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Fractional Anomalous Diffusion Model and Numerical Simulation for Sodium Ion Transport in the Intestinal Wall

DOI: 10.1155/2013/479634

Full-Text   Cite this paper   Add to My Lib

Abstract:

The authors present a fractional anomalous diffusion model to describe the uptake of sodium ions across the epithelium of gastrointestinal mucosa and their subsequent diffusion in the underlying blood capillaries using fractional Fick’s law. A heterogeneous two-phase model of the gastrointestinal mucosa is considered, consisting of a continuous extracellular phase and a dispersed cellular phase. The main mode of uptake is considered to be a fractional anomalous diffusion under concentration gradient and potential gradient. Appropriate partial differential equations describing the variation with time of concentrations of sodium ions in both the two phases across the intestinal wall are obtained using Riemann-Liouville space-fractional derivative and are solved by finite difference methods. The concentrations of sodium ions in the interstitial space and in the cells have been studied as a function of time, and the mean concentration of sodium ions available for absorption by the blood capillaries has also been studied. Finally, numerical results are presented graphically for various values of different parameters. This study demonstrates that fractional anomalous diffusion model is appropriate for describing the uptake of sodium ions across the epithelium of gastrointestinal mucosa. 1. Introduction The intestinal wall represents a complex system which allows the passage of substances either through the cells or in between the cells. The luminal surface of the intestine is covered with a typically leaky epithelium which enables the passage of ions via the intercellular route. The substance to be absorbed either penetrates into the intercellular space directly through the tight junction or enters the cell cytoplasm through the apical plasma membrane from the lumen of the intestine and then penetrates through the lateral plasma membrane to enter the intercellular space. The latter route leads to the underlying lamina propria, which consists of connective tissue, blood vessels, and lymph capillaries, and thus the substance enters the circulation (Figure 1) [1]. The process in which the ions enter the cell is passive diffusion under concentration gradient and potential gradient. This is mainly because transmural electrical potential differences of 5–12?mV have been reported from a variety of species during recent years [2, 3]. Although the potential differences across the intestinal wall are relatively small, they cannot be ignored in the studies of the intestinal transport of charged species [4]. Figure 1: Schematic diagram of the intestinal wall. Numerous

References

[1]  N. Karmakar and G. Jayaraman, “Linear diffusion of lead in the intestinal wall: A Theoretical Study,” IMA Journal of Mathematics Applied in Medicine and Biology, vol. 5, no. 1, pp. 33–43, 1988.
[2]  W. M. Armstrong, “Cellular mechanisms of ion transport in the small intestine,” Physiology of the Gastrointestinal Tract 2, pp. 1251–1266, 1987.
[3]  S. G. Schultz, “Principles of electrophysiology and their application to epithelial tissues, gastrointestinal physiology,” in Gastrointestinal Physiology, pp. 87–91, Butterworth, London, UK, 1974.
[4]  S. G. Schultz and P. F. Curran, Handbook of Physiology, vol. 3, Section 6, 1968.
[5]  M. S. Fadali, J. W. Steadman, and R. G. Jacquot, “A model of water absorption in human intestine,” Biomedical Sciences Instrumentation, vol. 16, pp. 49–53, 1980.
[6]  B. A. Hills, “Linear bulk diffusion into heterogeneous tissue,” The Bulletin of Mathematical Biophysics, vol. 30, no. 1, pp. 47–59, 1968.
[7]  M. Varadharajan and G. Jayaraman, “Sodium ion transport in the intestinal wall: a mathematical model,” IMA Journal of Mathematical Medicine and Biology, vol. 11, no. 3, pp. 193–205, 1994.
[8]  D. Baleanu, A. K. Golmankhaneh, R. Nigmatullin, and A. K. Golmankhaneh, “Fractional Newtonian mechanics,” Central European Journal of Physics, vol. 8, no. 1, pp. 120–125, 2010.
[9]  J. Singh, P. K. Gupta, and K. N. Rai, “Solution of fractional bioheat equations by finite difference method and HPM,” Mathematical and Computer Modelling, vol. 54, no. 9-10, pp. 2316–2325, 2011.
[10]  R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports, vol. 339, no. 1, pp. 1–77, 2000.
[11]  R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” Journal of Physics A, vol. 37, no. 31, pp. R161–R208, 2004.
[12]  R. L. Magin, S. C. Boregowda, and C. Deodhar, “Modeling of pulsating peripheral bio-Heat transferusing fractional calculus and constructal theory,” International Journal of Design, Nature, and Ecodynamics, vol. 1, no. 18, pp. 18–33, 2007.
[13]  X. Y. Jiang and H. T. Qi, “Thermal wave model of bioheat transfer with modified Riemann-Liouville fractional derivative,” Journal of Physics, vol. 45, no. 48, 10 pages, 2012.
[14]  W. C. Tan, C. Fu, C. Fu, W. Xie, and H. Cheng, “An anomalous subdiffusion model for calcium spark in cardiac myocytes,” Applied Physics Letters, vol. 91, no. 18, 3 pages, 2007.
[15]  R. G. Larson, The Structure and Rheology of Complex Fluids, vol. 2, Oxford University Press, New York, NY, USA, 1999.
[16]  R. L. Magin, “Fractional calculus models of complex dynamics in biological tissues,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1586–1593, 2010.
[17]  X. Y. Jiang, M. Y. Xu, and H. T. Qi, “The fractional diffusion model with an absorption term and modified Fick's law for non-local transport processes,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 262–269, 2010.
[18]  R. I. Macey, Membrane Physiology, Plenum, New York, NY, USA, 2nd edition, 1980.
[19]  D. E. Goldman, “Potential, impedence, and rectification in membranes,” The Journal of General Physiology, vol. 27, no. 1, pp. 37–60, 1943.
[20]  K. S. Cole, “Electrodiffusion models for the membrane of squid giant axon,” Physiological Reviews, vol. 45, pp. 340–379, 1965.
[21]  M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, no. 1, pp. 65–77, 2004.
[22]  C. Li and F. Zeng, “Finite difference methods for fractional differential equations,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 22, no. 4, 2012.
[23]  O. Muller, “The quantitation of the rat gastric mucosa by morphometric methods,” Scandinavian Journal of Gastroenterology, Supplement, vol. 101, no. 1, pp. 1–6, 1984.
[24]  M. Y. Xu and G. L. Zhao, “Nonisotonic reabsorption of water and steady state distribution of sodiumion in renal descending limb of Henle,” Acta Mechanica Sinica, vol. 1, no. 3, 1986.
[25]  F. O. Lauterbach, Intestinal Transport, University Park Press, 1976.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413