全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates

DOI: 10.1155/2013/754248

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main object of this paper is to investigate the Helmholtz and diffusion equations on the Cantor sets involving local fractional derivative operators. The Cantor-type cylindrical-coordinate method is applied to handle the corresponding local fractional differential equations. Two illustrative examples for the Helmholtz and diffusion equations on the Cantor sets are shown by making use of the Cantorian and Cantor-type cylindrical coordinates. 1. Introduction In the Euclidean space, we observe several interesting physical phenomena by using the differential equations in the different styles of planar, cylindrical, and spherical geometries. There are many models for the anisotropic perfectly matched layers [1], the plasma source ion implantation [2], fractional paradigm and intermediate zones in electromagnetism [3, 4], fusion [5], reflectionless sponge layers [6], time-fractional heat conduction [7], singular boundary value problems [8], and so on (see also the references cited in each of these works). The Helmholtz equation was applied to deal with problems in such fields as electromagnetic radiation, seismology, transmission, and acoustics. Kre? and Roach [9] discussed the transmission problems for the Helmholtz equation. Kleinman and Roach [10] studied the boundary integral equations for the three-dimensional Helmholtz equation. Karageorghis [11] presented the eigenvalues of the Helmholtz equation. Heikkola et al. [12] considered the parallel fictitious domain method for the three-dimensional Helmholtz equation. Fu and Mura [13] suggested the volume integrals of the inhomogeneous Helmholtz equation. Samuel and Thomas [14] proposed the fractional Helmholtz equation. Diffusion theory has become increasingly interesting and potentially useful in solids [15, 16]. Some applications of physics, such as superconducting alloys [17], lattice theory [18], and light diffusion in turbid material [19], were considered. Fractional calculus theory (see [20–28]) was applied to model the diffusion problems in engineering, and fractional diffusion equation was discussed (see, e.g., [29–36]). Recently, the local fractional calculus theory was applied to process the nondifferentiable phenomena in fractal domain (see [37–48] and the references cited therein). There are some local fractional models, such as the local fractional Fokker-Planck equation [37], the local fractional stress-strain relations [38], the local fractional heat conduction equation [45], wave equations on the Cantor sets [47], and the local fractional Laplace equation [48]. The main aim of this paper

References

[1]  F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microwave and Guided Wave Letters, vol. 7, no. 11, pp. 371–373, 1997.
[2]  J. T. Scheuer, M. Shamim, and J. R. Conrad, “Model of plasma source ion implantation in planar, cylindrical, and spherical geometries,” Journal of Applied Physics, vol. 67, no. 3, pp. 1241–1245, 1990.
[3]  N. Engheta, “On fractional paradigm and intermediate zones in electromagnetism. I. Planar observation,” Microwave and Optical Technology Letters, vol. 22, no. 4, pp. 236–241, 1999.
[4]  N. Engheta, “On fractional paradigm and intermediate zones in electromagnetism. II. Cylindrical and spherical observations,” Microwave and Optical Technology Letters, vol. 23, no. 2, pp. 100–103, 1999.
[5]  E. M. Schetselaar, “Fusion by the IHS transform: should we use cylindrical or spherical coordinates?” International Journal of Remote Sensing, vol. 19, no. 4, pp. 759–765, 1998.
[6]  P. G. Petropoulos, “Reflectionless sponge layers as absorbing boundary conditions for the numerical solution of Maxwell equations in rectangular, cylindrical, and spherical coordinates,” SIAM Journal on Applied Mathematics, vol. 60, no. 3, pp. 1037–1058, 2000.
[7]  X. Jiang and M. Xu, “The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate systems,” Physica A, vol. 389, no. 17, pp. 3368–3374, 2010.
[8]  R. Buckmire, “Investigations of nonstandard, Mickens-type, finite-difference schemes for singular boundary value problems in cylindrical or spherical coordinates,” Numerical Methods for Partial Differential Equations, vol. 19, no. 3, pp. 380–398, 2003.
[9]  R. Kre? and G. F. Roach, “Transmission problems for the Helmholtz equation,” Journal of Mathematical Physics, vol. 19, no. 6, pp. 1433–1437, 1978.
[10]  R. E. Kleinman and G. F. Roach, “Boundary integral equations for the three-dimensional Helmholtz equation,” SIAM Review, vol. 16, pp. 214–236, 1974.
[11]  A. Karageorghis, “The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation,” Applied Mathematics Letters, vol. 14, no. 7, pp. 837–842, 2001.
[12]  E. Heikkola, T. Rossi, and J. Toivanen, “A parallel fictitious domain method for the three-dimensional Helmholtz equation,” SIAM Journal on Scientific Computing, vol. 24, no. 5, pp. 1567–1588, 2003.
[13]  L. S. Fu and T. Mura, “Volume integrals of ellipsoids associated with the inhomogeneous Helmholtz equation,” Wave Motion, vol. 4, no. 2, pp. 141–149, 1982.
[14]  M. S. Samuel and A. Thomas, “On fractional Helmholtz equations,” Fractional Calculus & Applied Analysis, vol. 13, no. 3, pp. 295–308, 2010.
[15]  P. G. Shewmon, Diffusion in Solids, McGraw-Hill, New York, NY, USA, 1963.
[16]  G. R. Richter, “An inverse problem for the steady state diffusion equation,” SIAM Journal on Applied Mathematics, vol. 41, no. 2, pp. 210–221, 1981.
[17]  K. D. Usadel, “Generalized diffusion equation for superconducting alloys,” Physical Review Letters, vol. 25, no. 8, pp. 507–509, 1970.
[18]  D. Wolf-Gladrow, “A lattice Boltzmann equation for diffusion,” Journal of Statistical Physics, vol. 79, no. 5-6, pp. 1023–1032, 1995.
[19]  A. Ishimaru, “Diffusion of light in turbid material,” Applied Optics, vol. 28, no. 12, pp. 2210–2215, 1989.
[20]  I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
[21]  R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ, USA, 2000.
[22]  A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006.
[23]  J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, The Netherlands, 2007.
[24]  F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, UK, 2010.
[25]  G. M. Zaslavsky, “Chaos, fractional kinetics, and anomalous transport,” Physics Reports, vol. 371, no. 6, pp. 461–580, 2002.
[26]  D. Baleanu, J. A. T. Machado, and A. C. J. Luo, Fractional Dynamics and Control, Springer, New York, NY, USA, 2012.
[27]  J. Klafter, S. C. Lim, and R. Metzler, Fractional Dynamics in Physics: Recent Advances, World Scientific Publishing, Singapore, 2012.
[28]  D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Singapore, 2012.
[29]  W. Wyss, “The fractional diffusion equation,” Journal of Mathematical Physics, vol. 27, no. 11, pp. 2782–2785, 1986.
[30]  A. S. Chaves, “A fractional diffusion equation to describe Lévy flights,” Physics Letters A, vol. 239, no. 1-2, pp. 13–16, 1998.
[31]  I. M. Sokolov, A. V. Chechkin, and J. Klafter, “Fractional diffusion equation for a power-law-truncated Lévy process,” Physica A, vol. 336, no. 3-4, pp. 245–251, 2004.
[32]  A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, “Fractional diffusion in inhomogeneous media,” Journal of Physics A, vol. 38, no. 42, pp. L679–L684, 2005.
[33]  F. Mainardi and G. Pagnini, “The Wright functions as solutions of the time-fractional diffusion equation,” Applied Mathematics and Computation, vol. 141, no. 1, pp. 51–62, 2003.
[34]  C. Tadjeran, M. M. Meerschaert, and H.-P. Scheffler, “A second-order accurate numerical approximation for the fractional diffusion equation,” Journal of Computational Physics, vol. 213, no. 1, pp. 205–213, 2006.
[35]  J. Hristov, “Approximate solutions to fractional subdiffusion equations,” European Physical Journal, vol. 193, no. 1, pp. 229–243, 2011.
[36]  J. Hristov, “A short-distance integral-balance solution to a strong subdiffusion equation: a Weak Power-Law Profile,” International Review of Chemical Engineering, vol. 2, no. 5, pp. 555–563, 2010.
[37]  K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214–217, 1998.
[38]  A. Carpinteri, B. Chiaia, and P. Cornetti, “Static-kinematic duality and the principle of virtual work in the mechanics of fractal media,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 1-2, pp. 3–19, 2001.
[39]  F. Ben Adda and J. Cresson, “About non-differentiable functions,” Journal of Mathematical Analysis and Applications, vol. 263, no. 2, pp. 721–737, 2001.
[40]  A. Babakhani and V. Daftardar-Gejji, “On calculus of local fractional derivatives,” Journal of Mathematical Analysis and Applications, vol. 270, no. 1, pp. 66–79, 2002.
[41]  G. Jumarie, “Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions,” Applied Mathematics Letters, vol. 22, no. 3, pp. 378–385, 2009.
[42]  W. Chen, H. Sun, X. Zhang, and D. Koro?ak, “Anomalous diffusion modeling by fractal and fractional derivatives,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1754–1758, 2010.
[43]  X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, China, 2011.
[44]  X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.
[45]  X. J. Yang and D. Baleanu, “Fractal heat conduction problem solved by local fractional variation iteration method,” Thermal Science, vol. 17, no. 2, pp. 625–628, 2013.
[46]  X. J. Yang, H. M. Srivastava, J. H. He, and D. Baleanu, “Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives,” Physics Letters A, vol. 377, no. 28–30, pp. 1696–1700, 2013.
[47]  M.-S. Hu, R. P. Agarwal, and X.-J. Yang, “Local fractional Fourier series with application to wave equation in fractal vibrating string,” Abstract and Applied Analysis, vol. 2012, Article ID 567401, 15 pages, 2012.
[48]  Y. J. Yang, D. Baleanu, and X. J. Yang, “A local fractional variational iteration method for Laplace equation within local fractional operators,” Abstract and Applied Analysis, vol. 2013, Article ID 202650, 6 pages, 2013.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413