全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Delta Shock Waves for a Linearly Degenerate Hyperbolic System of Conservation Laws of Keyfitz-Kranzer Type

DOI: 10.1155/2013/958120

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is devoted to the study of delta shock waves for a hyperbolic system of conservation laws of Keyfitz-Kranzer type with two linearly degenerate characteristics. The Riemann problem is solved constructively. The Riemann solutions include exactly two kinds. One consists of two (or just one) contact discontinuities, while the other contains a delta shock wave. Under suitable generalized Rankine-Hugoniot relation and entropy condition, the existence and uniqueness of delta shock solution are established. These analytical results match well the numerical ones. Finally, two kinds of interactions of elementary waves are discussed. 1. Introduction Consider the following hyperbolic system of conservation laws: where with . Model (1) belongs to the nonsymmetric system of Keyfitz-Kranzer type [1, 2] as System (1) was also introduced as a macroscopic model for traffic flow by Aw and Rascle [3], where and are the density and the velocity of cars on the roadway, and the function is smooth and strictly increasing and it satisfies Model (1) was also studied by Lu [2]. By using the compensated compactness method, he established the existence of global bounded weak solutions of the Cauchy problem under the following two assumptions on , respectively: One can find that system (1) has two characteristics; one is always linearly degenerate while the other is linearly degenerate or genuinely nonlinear depending on the behaviors of . In [2, 3], the condition (3) is required, which implies that the second characteristic is genuinely nonlinear. Thus, one interesting topic is the case when both characteristics are linearly degenerate. These motivate us to consider (1) with which is the prototype function satisfying For system (1) with (5) or (6), a distinctive feature is that both eigenvalues are linearly degenerate; that is, this is a fully linearly degenerate system. Thus, all the classical elementary waves only consist of contact discontinuities. Moreover, the overlapping of linearly degenerate characteristics may result in the formation of delta shock wave. A delta shock wave is a generalization of an ordinary shock wave. Speaking informally, it is a kind of discontinuity, on which at least one of the state variables may develop an extreme concentration in the form of a Dirac delta function with the discontinuity as its support. It is more compressive than an ordinary shock wave in the sense that more characteristics enter the discontinuity line. From the physical point of view, a delta shock wave represents the process of concentration of the mass and formation of

References

[1]  B. L. Keyfitz and H. C. Kranzer, “A system of nonstrictly hyperbolic conservation laws arising in elasticity theory,” Archive for Rational Mechanics and Analysis, vol. 72, no. 3, pp. 219–241, 1980.
[2]  Y. Lu, “Existence of global bounded weak solutions to nonsymmetric systems of Keyfitz-Kranzer type,” Journal of Functional Analysis, vol. 261, no. 10, pp. 2797–2815, 2011.
[3]  A. Aw and M. Rascle, “Resurrection of “second order” models of traffic flow,” SIAM Journal on Applied Mathematics, vol. 60, no. 3, pp. 916–938, 2000.
[4]  F. Bouchut, “On zero pressure gas dynamics,” in Advances in Kinetic Theory and Computing: Selected Papers, B. Perthame, Ed., vol. 22, pp. 171–190, World Scientific, Singapore, 1994.
[5]  G.-Q. Chen and H. Liu, “Formation of -shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids,” SIAM Journal on Mathematical Analysis, vol. 34, no. 4, pp. 925–938, 2003.
[6]  G.-Q. Chen and H. Liu, “Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids,” Physica D, vol. 189, no. 1-2, pp. 141–165, 2004.
[7]  H. Cheng, H. Yang, and Y. Zhang, “Riemann problem for the Chaplygin Euler equations of compressible fluid flow,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, no. 11, pp. 985–992, 2010.
[8]  H. Cheng and H. Yang, “Riemann problem for the relativistic Chaplygin Euler equations,” Journal of Mathematical Analysis and Applications, vol. 381, no. 1, pp. 17–26, 2011.
[9]  H. Cheng and H. Yang, “Delta shock waves in chromatography equations,” Journal of Mathematical Analysis and Applications, vol. 380, no. 2, pp. 475–485, 2011.
[10]  H. Cheng and H. Yang, “Delta shock waves as limits of vanishing viscosity for 2-D steady pressureless isentropic flow,” Acta Applicandae Mathematicae, vol. 113, no. 3, pp. 323–348, 2011.
[11]  V. G. Danilov and D. Mitrovic, “Delta shock wave formation in the case of triangular hyperbolic system of conservation laws,” Journal of Differential Equations, vol. 245, no. 12, pp. 3704–3734, 2008.
[12]  V. G. Danilov and V. M. Shelkovich, “Dynamics of propagation and interaction of -shock waves in conservation law systems,” Journal of Differential Equations, vol. 211, no. 2, pp. 333–381, 2005.
[13]  L. Guo, W. Sheng, and T. Zhang, “The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system,” Communications on Pure and Applied Analysis, vol. 9, no. 2, pp. 431–458, 2010.
[14]  K. T. Joseph, “A Riemann problem whose viscosity solutions contain -measures,” Asymptotic Analysis, vol. 7, no. 2, pp. 105–120, 1993.
[15]  B. L. Keyfitz and H. C. Kranzer, “Spaces of weighted measures for conservation laws with singular shock solutions,” Journal of Differential Equations, vol. 118, no. 2, pp. 420–451, 1995.
[16]  J. Li and T. Zhang, “Generalized Rankine-Hugoniot relations of delta-shocks in solutions of transportation equations,” in NonlInear PDE and Related Areas, G. Q. Chen, Ed., pp. 219–232, World Scientific, Singapore, 1998.
[17]  E. Yu. Panov and V. M. Shelkovich, “ -shock waves as a new type of solutions to systems of conservation laws,” Journal of Differential Equations, vol. 228, no. 1, pp. 49–86, 2006.
[18]  V. M. Shelkovich, “The Riemann problem admitting -, -shocks, and vacuum states (the vanishing viscosity approach),” Journal of Differential Equations, vol. 231, no. 2, pp. 459–500, 2006.
[19]  W. Sheng and T. Zhang, “The Riemann problem for the transportation equations in gas dynamics,” Memoirs of the American Mathematical Society, vol. 137, no. 654, 1999.
[20]  D. C. Tan and T. Zhang, “Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws. I. Four- cases,” Journal of Differential Equations, vol. 111, no. 2, pp. 203–254, 1994.
[21]  D. Tan, T. Zhang, and Y. Zheng, “Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conversation laws,” Journal of Differential Equations, vol. 112, no. 1, pp. 1–32, 2004.
[22]  H. Yang, “Riemann problems for a class of coupled hyperbolic systems of conservation laws,” Journal of Differential Equations, vol. 159, no. 2, pp. 447–484, 1999.
[23]  H. Yang and Y. Zhang, “New developments of delta shock waves and its applications in systems of conservation laws,” Journal of Differential Equations, vol. 252, no. 11, pp. 5951–5993, 2012.
[24]  Y. Zheng, “Systems of conservation laws with incomplete sets of eigenvectors everywhere,” in Advances in Nonlinear Partial Differential Equations and Related Areas, G. Q. Chen, Ed., pp. 399–426, Word Scientific, Singapore, 1998.
[25]  H. Nessyahu and E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws,” Journal of Computational Physics, vol. 87, no. 2, pp. 408–463, 1990.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413