全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Complexity and the Fractional Calculus

DOI: 10.1155/2013/498789

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study complex processes whose evolution in time rests on the occurrence of a large and random number of events. The mean time interval between two consecutive critical events is infinite, thereby violating the ergodic condition and activating at the same time a stochastic central limit theorem that supports the hypothesis that the Mittag-Leffler function is a universal property of nature. The time evolution of these complex systems is properly generated by means of fractional differential equations, thus leading to the interpretation of fractional trajectories as the average over many random trajectories each of which satisfies the stochastic central limit theorem and the condition for the Mittag-Leffler universality. 1. Introduction The fractional calculus has developed in a number of significant ways in the recent past. Sokolov et al. [1] maintain that this calculus was restricted to the field of mathematics until the last decade of the twentieth century, when it became very popular among physicists as a powerful way to describe the dynamics of a variety of complex physical phenomena. For example, anomalous diffusion was described using fractional diffusion equations [2, 3]; viscoelastic materials were modeled using fractional Langevin equations [4]; and complex dynamic systems could be governed using fractional control [5]. In the last decade the concept of fractional dynamics has gained further attention in the statistical and chemical physics communities [6]. Fractional differential equations have also been successfully applied to neural dynamics [7, 8] and ecology [9] as well as to traditional fields of engineering [10, 11] namely [12, 13]. Of particular interest to the authors is the growing literature on extending systems of nonlinear dynamic equations having strange attractor solutions to fractional nonlinear equations. Such extensions were typically made by replacing integer-valued derivatives by fractional derivatives; for example, in the Lorenz system [14–16], in the chaotic rigid body motion of gyros [17], in Hopfield-type neural networks [8], and in the immune model of HIV infection [18], to name a few. These replacements were made in attempts to incorporate dynamic mechanisms thought to be important that could not be captured by the traditional models, for example, complexity in the form of memory in time and non-locality in space. The results of extending these nonlinear models has been to apparently introduce dissipation into the dynamics such that the solution on the strange attractor collapses to that of a stable fixed point. The

References

[1]  I. M. Sokolov, J. Klafter, and A. Blumen, “Fractional kinetics,” Physics Today, vol. 55, no. 11, pp. 48–54, 2002.
[2]  V. Seshadri and B. J. West, “Fractal dimensionality of Lévy processes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 14, pp. 4501–4505, 1982.
[3]  R. Metzler and J. Klafter, “The random walk's guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports, vol. 339, no. 1, p. 77, 2000.
[4]  R. Metzler, W. G. Gl?ke, and T. F. Nonnenmacher, “Fractional model equation for anomalous diffusion,” Physica A, vol. 211, no. 1, pp. 13–24, 1994.
[5]  I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999.
[6]  J. Klafter, S. C. Lim, and R. Metzler, Eds., Fractional Dynamics: Recent Advances, World Scientific, Singapore, 2012.
[7]  B. N. Lundstrom, M. H. Higgs, W. J. Spain, and A. L. Fairhall, “Fractional differentiation by neocortical pyramidal neurons,” Nature Neuroscience, vol. 11, no. 11, pp. 1335–1342, 2008.
[8]  E. Kaslik and S. Sivasundaram, “Nonlinear dynamics and chaos in fractional-order neural networks,” Neural Networks, vol. 32, pp. 245–256, 2012.
[9]  E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542–553, 2007.
[10]  R. L. Magin, Fractional Calculus in Bioengineering, Begell House, Redding, Conn, USA, 2006.
[11]  F. Gómez, J. Bernal, J. Rosales, and T. Cordova, “Modeling and simulation of equivalent circuits in description of biological systems—a fractional calculus approach,” Journal of Electrical Bioimpedance, vol. 3, p. 2, 2012.
[12]  D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Complexity, Nonlinearity and Chaos, World Scientific, 2012.
[13]  S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, and R. Magin, “Transient chaos in fractional Bloch equations,” Computers & Mathematics with Applications, vol. 64, no. 10, pp. 3367–3376, 2012.
[14]  I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system,” Physical Review Letters, vol. 91, no. 3, Article ID 034101, 4 pages, 2003.
[15]  C. Li and G. Chen, “Chaos in the fractional order Chen system and its control,” Chaos, Solitons and Fractals, vol. 22, no. 3, pp. 549–554, 2004.
[16]  R. W. Ibrahim, “Stability and stabilizing of fractional complex Lorenz Systems,” Abstract and Applied Analysis, vol. 2013, Article ID 127103, 13 pages, 2013.
[17]  L.-J. Sheu, H.-K. Chen, J.-H. Chen et al., “Chaos in the Newton-Leipnik system with fractional order,” Chaos, Solitons & Fractals, vol. 36, no. 1, pp. 98–103, 2008.
[18]  H. Ye and Y. Ding, “Nonlinear dynamics and chaos in a fractional-order HIV model,” Mathematical Problems in Engineering, vol. 2009, Article ID 378614, 12 pages, 2009.
[19]  A. A. Stanislavsky, “Hamiltonian formalism of fractional systems,” The European Physical Journal B, vol. 49, no. 1, pp. 93–101, 2006.
[20]  F. Mainardi and R. Gorenflo, “On Mittag-Leffler-type functions in fractional evolution processes,” Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 283–299, 2000.
[21]  M. G. Mittag-Leffler, “Sur la nouvelle function Eα(x),” Comptes Rendus De L'Académie Des Sciences, vol. 137, pp. 554–558, 1903.
[22]  B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003.
[23]  R. Metzler and J. Klafter, “From stretched exponential to inverse power-law: fractional dynamics, Cole-Cole relaxation processes, and beyond,” Journal of Non-Crystalline Solids, vol. 305, no. 1–3, pp. 81–87, 2002.
[24]  R. Gorenflo and F. Mainardi, “Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: mathematical aspect,” in WEHeraeus—Seminar on Anomalous Transport: Experimental Results and Theoretical Challenges, Physikzentrum Bad-Honnef, July 2006.
[25]  M. M. Meerschaert, E. Nane, and P. Vellaisamy, “The fractional Poisson process and the inverse stable subordinator,” Electronic Journal of Probability, vol. 16, pp. 1600–1620, 2011.
[26]  B. V. Gnedenko and V. Yu. Korolev, Random Summation: Limit Theorems and Applications, CRC Press, New York, NY, USA, 1996.
[27]  M. Zare and P. Grigolini, “Cooperation in neural systems: bridging complexity and periodicity,” Physical Review E, vol. 86, Article ID 051918, 6 pages, 2012.
[28]  G. Zumofen and J. Klafter, “Scale-invariant motion in intermittent chaotic systems,” Physical Review E, vol. 47, no. 2, pp. 851–863, 1993.
[29]  R. Failla, P. Grigolini, M. Ignaccolo, and A. Schwettmann, “Random growth of interfaces as a subordinated process,” Physical Reviews E, vol. 70, Article ID 010101, 4 pages, 2004.
[30]  J. P. Bouchaud, “Weak ergodicity breaking and aging in disordered systems,” Journal De Physique I, vol. 2, no. 9, pp. 1705–1713, 1992.
[31]  E. Barkai, Y. Garini, and R. Metzler, “Strange kinetics of single molecules in living cells,” Physics Today, vol. 65, no. 8, p. 29, 2012.
[32]  E. Tagliazucchi, P. Balenzuela, D. Fraiman, and D. R. Chialvo, “Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis,” Frontiers in Physiology, vol. 3, article 15, 2012.
[33]  M. Turalska, B. J. West, and P. Grigolini, “Temporal complexity of the order parameter at the phase transition,” Physical Reviews E, vol. 83, Article ID 061142, 6 pages, 2011.
[34]  E. W. Montroll and G. H. Weiss, “Random walks on lattices. II,” Journal of Mathematical Physics, vol. 6, pp. 167–181, 1965.
[35]  J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications,” Physics Reports, vol. 195, no. 4-5, pp. 127–293, 1990.
[36]  H. C. Fogedby, “Lévy flights in random environments,” Physical Review Letters, vol. 73, pp. 2517–2520, 1994.
[37]  H. C. Fogedby, “Lévy flights in quenched random force fields,” Physical Reviews E, vol. 58, pp. 1690–1712, 1998.
[38]  N. H. Bingham, “Limit theorems for occupation times of Markov processes,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol. 17, no. 1, pp. 1–22, 1971.
[39]  A. A. Stanislavsky, “Fractional dynamics from the ordinary Langevin equation,” Physical Review E, vol. 67, no. 2, Article ID 021111, 6 pages, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413