全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Proposed Modified Liu System with Fractional Order

DOI: 10.1155/2013/186037

Full-Text   Cite this paper   Add to My Lib

Abstract:

The chaos in a new system with order 3 is studied. We have shown that this chaotic system again will be chaotic when the order of system is less than 3. Generalized Adams-Bashforth algorithm has been used for investigating in stability of fixed points and existence of chaos. 1. Introduction It is well known that the nonlinear equations of dynamical systems with special condition have chaotic behavior [1]. Subsequently, additional studies were performed on the chaos and chaotic systems. Therefore solutions of different systems display their chaotic behavior such as Chen's system, Chua's dynamical system, the motion of double pendulum, and Rossler system amongst others. At first, it was thought that the chaos exists only when the order of system of differential equation is exactly 3. When the system of differential equation is composed of three first order differential equations, the order of the system is the sum of orders. But later on, a very interesting thing was realized; that is, it is also possible to observe chaotic behavior in a fractional order system. The system is composed of differential equations with fractional order derivatives [1–28]. For example, Sheu et al. reviewed the chaotic behavior of the Newton-Leipnik system with fractional order [10]. The important thing in the study of fractional-order systems is the minimum effective dimension of the system for which the system remains chaotic. This quantity has been numerically calculated for different systems including fractional order Lorenz system [11], fractional order Chua's system [12], and fractional order R?ssler system [13]. Recently, the chaos has been studied in fractional ordered Liu system, where the numerical investigations on the dynamics of this system have been carried out, and properties of the system have been analyzed by means of Lyapunov exponent [14]. In this paper we study the chaotic behavior of a generalization of the Liu system with fractional order. The framework of the paper is as follows. In Section 2, we study the behavior of a new fractional order system (modification of Liu system), and we study commensurate and incommensurate ordered systems and find lowest order at which chaos exists by numerical experiments. We have investigated the instability of fixed points and used Lyapunov exponent for the existence of chaos. In Section 3, we state the main conclusions. 2. The Proposed Modified Liu System In this section, we review the condition for asymptotic stability of the commensurate and incommensurate fractional ordered systems. We suggest the readers to see

References

[1]  E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of The Atmospheric Sciences, vol. 20, pp. 130–141, 1963.
[2]  J. Lü, T. Zhou, G. Chen, and S. Zhang, “Local bifurcations of the Chen system,” International Journal of Bifurcation and Chaos, vol. 12, no. 10, pp. 2257–2270, 2002.
[3]  L.J.M. Koci?, S. Gegovka-Zajkovka, and S. Kostadinova, “On Chua dynamical system,” Applied Mathematics, Informatics & Mechanics, Series A, vol. 2, pp. 53–60, 2010.
[4]  T. Stachowiak and T. Okada, “A numerical analysis of chaos in the double pendulum,” Chaos, Solitons and Fractals, vol. 29, no. 2, pp. 417–422, 2006.
[5]  W. Xuedi and W. Chen, “Bifurcation analysis and control of the Rossler,” in Proceedings of the 7th International Conference on System Natural Computation (ICNC '11), vol. 3, pp. 1484–1488, IEEE, Shanghai, China, 2011.
[6]  K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
[7]  C. M. Ionescu and R. De Keyser, “Relations between fractional-order model parameters and lung pathology in chronic obstructive pulmonary disease,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 4, pp. 978–987, 2009.
[8]  J. A. T. Machado, “Entropy analysis of integer and fractional dynamical systems,” Nonlinear Dynamics, vol. 62, no. 1-2, pp. 371–378, 2010.
[9]  A. M. Lopes, J. A. T. Machado, C. M. A. Pinto, and A. M. S. F. Galhano, “Fractional dynamics and MDS visualization of earthquake phenomena,” Computers and Mathematics with Applications, 2013.
[10]  L.-J. Sheu, H.-K. Chen, J.-H. Chen et al., “Chaos in the Newton-Leipnik system with fractional order,” Chaos, Solitons & Fractals, vol. 36, no. 1, pp. 98–103, 2008.
[11]  I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system,” Physical Review Letters, vol. 91, no. 3, pp. 034101/1–034101/4, 2003.
[12]  T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua's system,” IEEE Transactions on Circuits and Systems I, vol. 42, no. 8, pp. 485–490, 1995.
[13]  C. Li and G. Chen, “Chaos and hyperchaos in the fractional-order R?ssler equations,” Physica A, vol. 341, no. 1–4, pp. 55–61, 2004.
[14]  V. Daftardar-Gejji and S. Bhalekar, “Chaos in fractional ordered Liu system,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1117–1127, 2010.
[15]  I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999.
[16]  S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, New York, NY, USA, 1993.
[17]  K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002.
[18]  Z. Vukic, Lj. Kuljaca, D. Donlagic, and S. Tesnjak, Non-linear Control Systems, Marcel Dekker, New York, NY, USA, 2003.
[19]  A. Razminia, V.J. Majd, and D. Baleanu, “Chaotic incommensurate fractional order R?ssler system: active control and synchronization,” Advances in Difference Equations, article 15, 2011.
[20]  M. S. Tavazoei and M. Haeri, “Chaotic attractors in incommensurate fractional order systems,” Physica D, vol. 237, no. 20, pp. 2628–2637, 2008.
[21]  W. Deng, C. Li, and J. Lü, “Stability analysis of linear fractional differential system with multiple time delays,” Nonlinear Dynamics, vol. 48, no. 4, pp. 409–416, 2007.
[22]  M. S. Tavazoei and M. Haeri, “A necessary condition for double scroll attractor existence in fractional-order systems,” Physics Letters A, vol. 367, no. 1-2, pp. 102–113, 2007.
[23]  L. O. Chua, M. Komuro, and T. Matsumoto, “The double scroll family. I. Rigorous proof of chaos,” IEEE Transactions on Circuits and Systems, vol. 33, no. 11, pp. 1072–1097, 1986.
[24]  C. P. Silva, “Shilnikov theorem—a tutorial,” IEEE Transactions on Circuits and Systems I, vol. 40, no. 10, pp. 675–682, 1993.
[25]  D. Cafagna and G. Grassi, “New 3D-scroll attractors in hyperchaotic Chua's circuits forming a ring,” International Journal of Bifurcation and Chaos, vol. 13, no. 10, pp. 2889–2903, 2003.
[26]  J. Lü, G. Chen, X. Yu, and H. Leung, “Design and analysis of multiscroll chaotic attractors from saturated function series,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 12, pp. 2476–2490, 2004.
[27]  A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D, vol. 16, no. 3, pp. 285–317, 1985.
[28]  M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest Lyapunov exponents from small data sets,” Physica D, vol. 65, no. 1-2, pp. 117–134, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413