全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Validation of ASTER Surface Temperature Data with In Situ Measurements to Evaluate Heat Islands in Complex Urban Areas

DOI: 10.1155/2014/620410

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study compared Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) surface temperature data with in situ measurements to validate the use of ASTER data for studying heat islands in urban settings with complex spatial characteristics. Eight sites in Changwon, Korea, were selected for analyses. Surface temperature data were extracted from the thermal infrared (TIR) band of ASTER on four dates during the summer and fall of 2012, and corresponding in situ measurements of temperature were also collected. Comparisons showed that ASTER derived temperatures were generally 4.27°C lower than temperatures collected by in situ measurements during the daytime, except on cloudy days. However, ASTER temperatures were higher by 2.23–2.69°C on two dates during the nighttime. Temperature differences between a city park and a paved area were insignificant. Differences between ASTER derived temperatures and onsite measurements are caused by a variety of factors including the application of emissivity values that do not consider the complex spatial characteristics of urban areas. Therefore, to improve the accuracy of surface temperatures extracted from infrared satellite imagery, we propose a revised model whereby temperature data is obtained from ASTER and emissivity values for various land covers are extracted based on in situ measurements. 1. Introduction Cities all over the world are experiencing more common urban heat islands (UHIs), whereby urban settlements are hotter than rural areas because of the rapid increase in artificial land cover such as asphalt [1–4]. Urban heat islands can generate tropical nighttime conditions and exacerbate heat waves, which negatively affects the health and welfare of urban residents [5–8]. Moreover, temperature increases from UHIs greatly increase energy consumption from the use of coolers [9, 10] and the aggregated effects from UHIs can cause changes in urban ecosystems [11]. The problems associated with UHIs are expected to worsen with global warming and UHIs are rapidly expanding into a global environmental issue of concern [12–14]. To alleviate adverse effects from UHIs, a wide range of studies have been performed using data on land surface temperatures (LSTs) extracted from remotely sensed thermal infrared data [15–18]. Surface temperature data derived from satellite images can be used to assess characteristics of UHIs such as how temperatures vary across the canopy layer of roofs and other surface features [19–23] or how temperatures are related to the surface energy balance [24–28]. In addition, satellite

References

[1]  T. R. Oke, Boundary Layer Climates, Methuen, London, UK, 2nd edition, 1987.
[2]  I. Eliasson, “Urban nocturnal temperatures, street geometry and land use,” Atmospheric Environment, vol. 30, no. 3, pp. 379–392, 1996.
[3]  K. G. Lee and W. H. Hong, “A study on the urban heat environment pattern analysis and alleviation plan,” The Architectural Institute of Korea, vol. 24, no. 9, 2008.
[4]  H. Takebayashi and M. Moriyama, “Study on the urban heat island mitigation effect achieved by converting to grass-covered parking,” Solar Energy, vol. 83, no. 8, pp. 1211–1223, 2009.
[5]  S. L. Harlan, A. J. Brazel, L. Prashad, W. L. Stefanov, and L. Larsen, “Neighborhood microclimates and vulnerability to heat stress,” Social Science and Medicine, vol. 63, no. 11, pp. 2847–2863, 2006.
[6]  R. S. Kovats and S. Hajat, “Heat stress and public health: a critical review,” Annual Review of Public Health, vol. 29, pp. 41–55, 2008.
[7]  R. Lafortezza, G. Carrus, G. Sanesi, and C. Davies, “Benefits and well-being perceived by people visiting green spaces in periods of heat stress,” Urban Forestry and Urban Greening, vol. 8, no. 2, pp. 97–108, 2009.
[8]  E. Ng, L. Chen, Y. Wang, and C. Yuan, “A study on the cooling effects of greening in a high-density city: an experience from Hong Kong,” Building and Environment, vol. 47, no. 1, pp. 256–271, 2012.
[9]  S. H. Baek, A. Shimizu, H. Y. Kim, and E. H. Jung, “Evaluation of thermal environment improvement effect from public design improvement project on the urban street space,” Journal of the Environmental Sciences, vol. 20, no. 9, pp. 1105–1114, 2011.
[10]  E. L. Krüger, F. O. Minella, and F. Rasia, “Impact of urban geometry on outdoor thermal comfort and air quality from field measurements in Curitiba, Brazil,” Building and Environment, vol. 46, no. 3, pp. 621–634, 2011.
[11]  S. Knapp, I. Kühn, O. Schweiger, and S. Klotz, “Challenging urban species diversity: contrasting phylogenetic patterns across plant functional groups in Germany,” Ecology Letters, vol. 11, no. 10, pp. 1054–1064, 2008.
[12]  G. Luber and M. McGeehin, “Climate change and extreme heat events,” American Journal of Preventive Medicine, vol. 35, no. 5, pp. 429–435, 2008.
[13]  D. E. Bowler, L. Buyung-Ali, T. M. Knight, and A. S. Pullin, “Urban greening to cool towns and cities: a systematic review of the empirical evidence,” Landscape and Urban Planning, vol. 97, no. 3, pp. 147–155, 2010.
[14]  B. G. Song and K. H. Park, “The classification of spatial patterns considering formation parameters of urban climate: the case of Changwon city, South Korea,” Journal of Environmental Impact Assessment, vol. 20, no. 3, pp. 299–311, 2011.
[15]  D. A. Quattrochi and J. C. Luvall, “Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications,” Landscape Ecology, vol. 14, no. 6, pp. 577–598, 1999.
[16]  J. A. Voogt and T. R. Oke, “Thermal remote sensing of urban climates,” Remote Sensing of Environment, vol. 86, no. 3, pp. 370–384, 2003.
[17]  Q. Weng, D. Lu, and J. Schubring, “Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies,” Remote Sensing of Environment, vol. 89, no. 4, pp. 467–483, 2004.
[18]  L. Klok, S. Zwart, H. Verhagen, and E. Mauri, “The surface heat island of Rotterdam and its relationship with urban surface characteristics,” Resources, Conservation and Recycling, vol. 64, pp. 23–29, 2012.
[19]  J. E. Nichol, “A GIS-based approach to microclimate monitoring in Singapore's high-rise housing estates,” Photogrammetric Engineering & Remote Sensing, vol. 60, no. 10, pp. 1225–1232, 1994.
[20]  J. A. Voogt and T. R. Oke, “Effects of urban surface geometry on remotely-sensed surface temperature,” International Journal of Remote Sensing, vol. 19, no. 5, pp. 895–920, 1998.
[21]  Q. Weng, H. Liu, and D. Lu, “Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States,” Urban Ecosystems, vol. 10, no. 2, pp. 203–219, 2007.
[22]  H. Liu and Q. Weng, “Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA,” Environmental Monitoring and Assessment, vol. 144, no. 1–3, pp. 199–219, 2008.
[23]  Q. Weng and D. Lu, “A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States,” International Journal of Applied Earth Observation and Geoinformation, vol. 10, no. 1, pp. 68–83, 2008.
[24]  T. N. Carlson, J. K. Dodd, S. G. Benjamin, and J. N. Cooper, “Satellite estimation of the surface energy balance, moisture availability and thermal inertia,” Journal of Applied Meteorology, vol. 20, no. 1, pp. 67–87, 1981.
[25]  X. Zhang, Y. Aono, and N. Monji, “Spatial variability of urban surface heat fluxes estimated from Landsat TM data under summer and winter conditions,” Journal of Agricultural Meteorology, vol. 54, no. 1, pp. 1–11, 1998.
[26]  S. Kato and Y. Yamaguchi, “Analysis of urban heat-island effect using ASTER and ETM+ Data: separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux,” Remote Sensing of Environment, vol. 99, no. 1-2, pp. 44–54, 2005.
[27]  A. Buyantuyev and J. Wu, “Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns,” Landscape Ecology, vol. 25, no. 1, pp. 17–33, 2010.
[28]  J. Li, C. Song, L. Cao, F. Zhu, X. Meng, and J. Wu, “Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China,” Remote Sensing of Environment, vol. 115, no. 12, pp. 3249–3263, 2011.
[29]  G. Fu, Z. Shen, P. Shi, Y. Zhang, and J. Wu, “Estimating air temperature of an alpine meadow on the Northern Tibetan Plateau using MODIS land surface temperature,” Acta Ecologica Sinica, vol. 31, pp. 8–13, 2011.
[30]  A. Benali, A. C. Carvalho, J. P. Nunes, N. Carvalhasis, and A. Santos, “Estimating air temperature in Portugal using MODIS LST data,” Remote Sensing of Environment, vol. 124, pp. 108–121, 2012.
[31]  A. Chudnovsky, E. Ben-Dor, and H. Saaroni, “Diurnal thermal behavior of selected urban objects using remote sensing measurements,” Energy and Buildings, vol. 36, no. 11, pp. 1063–1074, 2004.
[32]  Q. Weng, “Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 64, no. 4, pp. 335–344, 2009.
[33]  C. Mihalcea, B. W. Brock, G. Diolaiuti et al., “Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy),” Cold Regions Science and Technology, vol. 52, no. 3, pp. 341–354, 2008.
[34]  G. Rigo, E. Parlow, and D. Oesch, “Validation of satellite observed thermal emission with in-situ measurements over an urban surface,” Remote Sensing of Environment, vol. 104, no. 2, pp. 201–210, 2006.
[35]  J. E. Nichol, W. Y. Fung, K.-S. Lam, and M. S. Wong, “Urban heat island diagnosis using ASTER satellite images and 'in situ' air temperature,” Atmospheric Research, vol. 94, no. 2, pp. 276–284, 2009.
[36]  D. A. Hartz, L. Prashad, B. C. Hedquist, J. Golden, and A. J. Brazel, “Linking satellite images and hand-held infrared thermography to observed neighborhood climate conditions,” Remote Sensing of Environment, vol. 104, no. 2, pp. 190–200, 2006.
[37]  Changwon city hall homepage, http://www.changwon.or.kr.
[38]  B. G. Song and K. H. Park, “An analysis of cold air generation area considering climate-ecological function-focus on Chagnwon-si, Gyeongsangnam-do,” Journal of the Korean Association of Geographic Information Studies, vol. 13, no. 1, pp. 114–127, 2010.
[39]  S. Kato and Y. Yamaguchi, “Estimation of storage heat flux in an urban area using ASTER data,” Remote Sensing of Environment, vol. 110, no. 1, pp. 1–17, 2007.
[40]  A. R. Gillespie, S. Rokugawa, S. J. Hook, T. Mansunaga, and A. B. Kahle, “Temperature/Emissivity Separation Algorithm Theoretical Basis Document, Version 2.4,” NASA contract NAS5-31372, Washington, DC, USA, 1999.
[41]  Changwon-si, “The construction of Changwon-si environmental atlas and GIS DB (1st),” Changwon-si Research Report, Changwon, Republic of Korea, 2009.
[42]  S. Kato, T. Matsunaga, and Y. Yamaguchi, “Influence of shade on surface temperature in an urban estimated by ASTER data,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, vol. 38, pp. 925–929, 2010.
[43]  K.-S. Cheng, Y.-F. Su, F.-T. Kuo, W.-C. Hung, and J.-L. Chiang, “Assessing the effect of landcover changes on air temperatu×re using remote sensing images-A pilot study in northern Taiwan,” Landscape and Urban Planning, vol. 85, no. 2, pp. 85–96, 2008.
[44]  D. E. Sabol Jr., A. R. Gillespie, E. Abbott, and G. Yamada, “Field validation of the ASTER Temperature-Emissivity Separation algorithm,” Remote Sensing of Environment, vol. 113, no. 11, pp. 2328–2344, 2009.
[45]  J. A. Sobrino, R. Oltra-Carrió, J. C. Jiménez-Mu?oz et al., “Emissivity mapping over urban areas using a classification-based approach: application to the Dual-use European Security IR Experiment (DESIREX),” International Journal of Applied Earth Observation and Geoinformation, vol. 18, pp. 141–147, 2012.
[46]  E. Valor and V. Caselles, “Mapping land surface emissivity from NDVI: application to European, African, and South American areas,” Remote Sensing of Environment, vol. 57, no. 3, pp. 167–184, 1996.
[47]  V. Caselles, C. Coll, E. Valor, and E. Rubio, “Mapping land surface emissivity using AVHRR data application to La Mancha, Spain,” Remote Sensing Reviews, vol. 12, no. 3-4, pp. 311–333, 1995.
[48]  S. P. Arya, Introduction to Micrometeorology, Academic Press, 2nd edition, 2003.
[49]  B. G. Song, Development of integrated spatial environmental assessment and planning methods for improving the urban climate and air quality [M.S. thesis], Changwon National University, Changwon, Republic of Korea, 2011.
[50]  E. Erell, D. Pearlmutter, and T. Williamson, Urban Microclimate: Designing the Spaces Between Buildings, Earthscan, Washington, DC, USA, 2012.
[51]  L. Barring, J. O. Mattsson, and S. Lindqvist, “Canyon geometry, street temperatures and urban heat island in Malmo, Sweden,” Journal of Climatology, vol. 5, no. 4, pp. 433–444, 1985.
[52]  K.-S. Han, A. A. Viau, and F. Anctil, “An analysis of GOES and NOAA derived land surface temperatures estimated over a boreal forest,” International Journal of Remote Sensing, vol. 25, no. 21, pp. 4761–4780, 2004.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413