全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Feature Selection for Very Short-Term Heavy Rainfall Prediction Using Evolutionary Computation

DOI: 10.1155/2014/203545

Full-Text   Cite this paper   Add to My Lib

Abstract:

We developed a method to predict heavy rainfall in South Korea with a lead time of one to six hours. We modified the AWS data for the recent four years to perform efficient prediction, through normalizing them to numeric values between 0 and 1 and undersampling them by adjusting the sampling sizes of no-heavy-rain to be equal to the size of heavy-rain. Evolutionary algorithms were used to select important features. Discriminant functions, such as support vector machine (SVM), k-nearest neighbors algorithm (k-NN), and variant k-NN (k-VNN), were adopted in discriminant analysis. We divided our modified AWS data into three parts: the training set, ranging from 2007 to 2008, the validation set, 2009, and the test set, 2010. The validation set was used to select an important subset from input features. The main features selected were precipitation sensing and accumulated precipitation for 24 hours. In comparative SVM tests using evolutionary algorithms, the results showed that genetic algorithm was considerably superior to differential evolution. The equitable treatment score of SVM with polynomial kernel was the highest among our experiments on average. k-VNN outperformed k-NN, but it was dominated by SVM with polynomial kernel. 1. Introduction South Korea lies in the temperate zone. In South Korea, we have clearly distinguished four seasons, where spring and fall are short relatively to summer and winter. It is geographically located between the parallels 125°04′′E and 131°52′′E and the meridians 33°06′′N and 38° 27′′N in the Northern Hemisphere, on the east coast of the Eurasian Continent, and also adjacent to the Western Pacific, as shown in Figure 1. Therefore, it has complex climate characteristics, which show both continental and oceanic features. It has a wide interseasonal temperature difference and much more precipitation than that of the Continent. In addition, it has obvious monsoon season wind, a rainy period from the East Asian Monsoon, locally called Changma [1], typhoons, and frequently heavy snowfalls in winter. The area belongs to a wet region because of more precipitation than that of the world average. Figure 1: The location of South Korea in East Asia and the dispersion of automatic weather stations in South Korea. The annual mean precipitation of South Korea, as shown in Figure 2, is around 1,500?mm and 1,300?mm in the central part. Geoje-si of Gyeongsangnam-do has the largest amount of precipitation, 2007.3?mm, and Baegryeong island of Incheon has the lowest amount of precipitation, 825.6?mm. Figure 2: Annual (a) and summer (b) mean

References

[1]  J. Bushey, “The Changma,” http://www.theweatherprediction.com/weatherpapers/007.
[2]  G. E. Afandi, M. Mostafa, and F. E. Hussieny, “Heavy rainfall simulation over sinai peninsula using the weather research and forecasting model,” International Journal of Atmospheric Sciences, vol. 2013, Article ID 241050, 11 pages, 2013.
[3]  J. H. Seo and Y. H. Kim, “A survey on rainfall forecast algorithms based on machine learning technique,” in Proceedings of the KIIS Fall Conference, vol. 21, no. 2, pp. 218–221, 2011, (Korean).
[4]  Korea Meteorological Administration, http://www.kma.go.kr.
[5]  M. N. French, W. F. Krajewski, and R. R. Cuykendall, “Rainfall forecasting in space and time using a neural network,” Journal of Hydrology, vol. 137, no. 1–4, pp. 1–31, 1992.
[6]  E. Toth, A. Brath, and A. Montanari, “Comparison of short-term rainfall prediction models for real-time flood forecasting,” Journal of Hydrology, vol. 239, no. 1–4, pp. 132–147, 2000.
[7]  S. J. Burian, S. R. Durrans, S. J. Nix, and R. E. Pitt, “Training artificial neural networks to perform rainfall disaggregation,” Journal of Hydrologic Engineering, vol. 6, no. 1, pp. 43–51, 2001.
[8]  M. C. Valverde Ramírez, H. F. de Campos Velho, and N. J. Ferreira, “Artificial neural network technique for rainfall forecasting applied to the S?o Paulo region,” Journal of Hydrology, vol. 301, no. 1–4, pp. 146–162, 2005.
[9]  N. Q. Hung, M. S. Babel, S. Weesakul, and N. K. Tripathi, “An artificial neural network model for rainfall forecasting in Bangkok, Thailand,” Hydrology and Earth System Sciences, vol. 13, no. 8, pp. 1413–1425, 2009.
[10]  V. M. Krasnopolsky and Y. Lin, “A neural network nonlinear multimodel ensemble to improve precipitation forecasts over continental US,” Advances in Meteorology, vol. 2012, Article ID 649450, 11 pages, 2012.
[11]  L. Ingsrisawang, S. Ingsriswang, S. Somchit, P. Aungsuratana, and W. Khantiyanan, “Machine learning techniques for short-term rain forecasting system in the northeastern part of Thailand,” in Proceedings of the World Academy of Science, Engineering and Technology, vol. 31, pp. 248–253, 2008.
[12]  W.-C. Hong, “Rainfall forecasting by technological machine learning models,” Applied Mathematics and Computation, vol. 200, no. 1, pp. 41–57, 2008.
[13]  C. M. Kishtawal, S. Basu, F. Patadia, and P. K. Thapliyal, “Forecasting summer rainfall over India using genetic algorithm,” Geophysical Research Letters, vol. 30, no. 23, pp. 1–9, 2003.
[14]  J. N. K. Liu, B. N. L. Li, and T. S. Dillon, “An improved Na?ve Bayesian classifier technique coupled with a novel input solution method,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 31, no. 2, pp. 249–256, 2001.
[15]  S. Nandargi and S. S. Mulye, “Relationships between rainy days, mean daily intensity, and seasonal rainfall over the koyna catchment during 1961–2005,” The Scientific World Journal, vol. 2012, Article ID 894313, 10 pages, 2012.
[16]  A. Routray, K. K. Osuri, and M. A. Kulkarni, “A comparative study on performance of analysis nudging and 3DVAR in simulation of a heavy rainfall event using WRF modeling system,” ISRN Meteorology, vol. 2012, no. 21, Article ID 523942, 2012.
[17]  Y. K. Kouadio, J. Servain, L. A. T. Machado, and C. A. D. Lentini, “Heavy rainfall episodes in the eastern northeast Brazil linked to large-scale ocean-atmosphere conditions in the tropical Atlantic,” Advances in Meteorology, vol. 2012, Article ID 369567, 16 pages, 2012.
[18]  Z. Wang and C. Huang, “Self-organized criticality of rainfall in central China,” Advances in Meteorology, vol. 2012, Article ID 203682, 8 pages, 2012.
[19]  T. Hou, F. Kong, X. Chen, and H. Lei, “Impact of 3DVAR data assimilation on the prediction of heavy rainfall over southern China,” Advances in Meteorology, vol. 2013, Article ID 129642, 17 pages, 2013.
[20]  H. D. Lee, S. W. Lee, J. K. Kim, and J. H. Lee, “Feature selection for heavy rain prediction using genetic algorithms,” in Proceedings of the Joint 6th International Conference on Soft Computing and Intelligent Systems and 13th International Symposium on Advanced Intelligent Systems (SCIS-ISIS '12), pp. 830–833, 2012.
[21]  J. H. Seo and Y. H. Kim, “Genetic feature selection for very short-term heavy rainfall prediction,” in Proceedings of the International Conference on Convergence and Hybrid Information Technology, vol. 7425 of Lecture Notes in Computer Science, pp. 312–322, 2012.
[22]  N. V. Chawla, “Data mining for imbalanced datasets: an overview,” Data Mining and Knowledge Discovery Handbook, vol. 5, pp. 853–867, 2006.
[23]  Y.-S. Choi and B.-R. Moon, “Feature selection in genetic fuzzy discretization for the pattern classification problems,” IEICE Transactions on Information and Systems, vol. 90, no. 7, pp. 1047–1054, 2007.
[24]  K. A. de Jong, An analysis of the behavior of a class of genetic adaptive systems [Ph.D. thesis], University of Michigan, Ann Arbor, Mich, USA, 1975.
[25]  R. N. Khushaba, A. Al-Ani, and A. Al-Jumaily, “Differential evolution based feature subset selection,” in Proceedings of the 19th International Conference on Pattern Recognition (ICPR '08), pp. 1–4, December 2008.
[26]  R. N. Khushaba, A. Al-Ani, and A. Al-Jumaily, “Feature subset selection using differential evolution and a statistical repair mechanism,” Expert Systems with Applications, vol. 38, no. 9, pp. 11515–11526, 2011.
[27]  C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011.
[28]  Automatic Weather Stations, http://www.automaticweatherstation.com.
[29]  R. Chang, Z. Pei, and C. Zhang, “A modified editing k-nearest neighbor rule,” Journal of Computers, vol. 6, no. 7, pp. 1493–1500, 2011.
[30]  T. R. Golub, D. K. Slonim, P. Tamayo et al., “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,” Science, vol. 286, no. 5439, pp. 531–527, 1999.
[31]  Y. H. Kim, S. Y. Lee, and B. R. Moon, “A genetic approach for gene selection on microarray expression data,” in Genetic and Evolutionary Computation—GECCO 2004, K. Deb, Ed., vol. 3102 of Lecture Notes in Computer Science, pp. 346–355, 2004.
[32]  Y. Yin, D. Han, and Z. Cai, “Explore data classification algorithm based on SVM and PSO for education decision,” Journal of Convergence Information Technology, vol. 6, no. 10, pp. 122–128, 2011.
[33]  Wikipedia, http://en.wikipedia.org.
[34]  E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, “A comparative study of differential evolution variants for global optimization,” in Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference, pp. 485–492, July 2006.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133