全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Revisit to the Impacts of Land Use Changes on the Human Wellbeing via Altering the Ecosystem Provisioning Services

DOI: 10.1155/2013/907367

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is widely acknowledged that land use changes (LUC) associated with climate variations are affecting the human wellbeing. This paper conducted a revisit to relevant researches on the impacts of LUC on human wellbeing via specifically altering the ecosystem provisioning services. First, the explorations on the influences of LUC on ecosystem provisioning services were reviewed, including the researches on the influences of LUC on agroecosystem services and forest and/or grassland ecosystem services. Then the quantitative identification of the impacts of LUC on ecosystem provisioning services was commented on. In the light of enhanced observation and valuation methods, several approaches to ecosystem services and improved models for assessing those ecosystem services were assessed. The major indicators used to uncover the influences of LUC on human wellbeing were summarized including the increase of inputs and the reduction of outputs in production and the augmented health risk induced by the irrational land uses. Finally, this paper uncovered the research gaps and proposed several research directions to address these gaps. 1. Introduction The relationship between human activities and ecosystems has been discussed for many years by both natural and social scientists. LUC and climate variations and their effects on ecosystems have been core issues of the International Geosphere-Biosphere Program (IGBP) and International Human Dimensions Program on Global Environmental Change (IHDP). As two interacting processes, LUC and climate variations influence each other. On one hand, climate variations affect human activities, which indirectly exert influences on LUC, and on the other hand, LUC caused by humans accelerate influences on climate variations. Meanwhile, all these changes exert impacts on ecosystems together. In recent years, ecosystem services have been considered as an entry point of science to uncover the human and nature coevolution processes. Ecosystem services represent the benefits that living organisms derived from ecosystems to maintain the earth’s life support system and emphasize the role of humans in socioecological systems, which include supporting services, regulating services, provisioning services, and cultural services [1]. As the global population grows and its consumption patterns change, additional land will be required for living space and agricultural production. Then the knotty question facing global society is how to meet humans’ growing demands for living space, food, fuel, and other materials while sustaining ecosystem services

References

[1]  W. V. Reid, H. A. Mooney, A. Cropper et al., “Ecosystems and human well-being: synthesis,” Millennium Ecosystem Assessment, 2005.
[2]  E. Nelson, H. Sander, P. Hawthorne et al., “Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models,” PLoS ONE, vol. 5, no. 12, Article ID e14327, 2010.
[3]  B. L. Turner, D. Skole, S. Sanderson, G. Fischer, L. Fresco, and R. Leemans, “Land-use and land-cover change: science/research plan,” Global Change Report, 1995.
[4]  R. Costanza, R. D'Arge, R. de Groot et al., “The value of the world's ecosystem services and natural capital,” Nature, vol. 387, no. 6630, pp. 253–260, 1997.
[5]  M. Antrop, “Changing patterns in the urbanized countryside of Western Europe,” Landscape Ecology, vol. 15, no. 3, pp. 257–270, 2000.
[6]  G. C. Daily, S. Polasky, J. Goldstein et al., “Ecosystem services in decision making: time to deliver,” Frontiers in Ecology and the Environment, vol. 7, no. 1, pp. 21–28, 2009.
[7]  N. H. Euliss Jr., L. M. Smith, S. Liu et al., “The need for simultaneous evaluation of ecosystem services and land use change,” Environmental Science and Technology, vol. 44, no. 20, pp. 7761–7763, 2010.
[8]  G. E. Jones, P. Cross, N. Foley et al., “Provisioning services,” UK National Ecosystem Assessment Technical Report, UNEP-WCMC, Cambridge, UK, 2011.
[9]  J. Alcamo, D. Van Vuuren, W. Cramer et al., “Changes in ecosystem services and their drivers across the scenarios,” in Ecosystems and Human Well-Being: Scenarios, vol. 2, pp. 297–374, Island Press, Washington DC, USA, 2005.
[10]  M. V. K. Sivakumar, H. P. Das, and O. Brunini, “Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics,” Climatic Change, vol. 70, no. 1-2, pp. 31–72, 2005.
[11]  A. G. Power, “Ecosystem services and agriculture: tradeoffs and synergies,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1554, pp. 2959–2971, 2010.
[12]  M. J. Metzger, M. D. A. Rounsevell, L. Acosta-Michlik, R. Leemans, and D. Schr?ter, “The vulnerability of ecosystem services to land use change,” Agriculture, Ecosystems and Environment, vol. 114, no. 1, pp. 69–85, 2006.
[13]  R. F. Bangash, A. Passuello, M. Sanchez-Canales et al., “Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control,” Science of the Total Environment, vol. 458, pp. 246–255, 2013.
[14]  D. Schr?ter, W. Cramer, R. Leemans et al., “Ecology: ecosystem service supply and vulnerability to global change in Europe,” Science, vol. 310, no. 5752, pp. 1333–1337, 2005.
[15]  B. Reyers, P. J. O'Farrell, R. M. Cowling, B. N. Egoh, D. C. le Maitre, and J. H. J. Vlok, “Ecosystem services, land-cover change, and stakeholders: finding a sustainable foothold for a semiarid biodiversity hotspot,” Ecology and Society, vol. 14, no. 1, article 38, 2009.
[16]  M. J. Swift, A. N. Izac, and M. van Noordwijk, “Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions?” Agriculture, Ecosystems and Environment, vol. 104, no. 1, pp. 113–134, 2004.
[17]  C. Folke, J. Colding, and F. Berkes, “Synthesis: building resilience and adaptive capacity in social-ecological systems,” in Navigating Social-Ecological Systems: Building Resilience for Complexity and Change, pp. 352–387, 2003.
[18]  M. D. Nosetto, E. G. Jobbágy, and J. M. Paruelo, “Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina,” Global Change Biology, vol. 11, no. 7, pp. 1101–1117, 2005.
[19]  G. Sun, G. Zhou, Z. Zhang, X. Wei, S. G. McNulty, and J. M. Vose, “Potential water yield reduction due to forestation across China,” Journal of Hydrology, vol. 328, no. 3-4, pp. 548–558, 2006.
[20]  S. M. Swinton, F. Lupi, G. P. Robertson, and S. K. Hamilton, “Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits,” Ecological Economics, vol. 64, no. 2, pp. 245–252, 2007.
[21]  A. A. Jaradat and G. Boody, “Modeling agroecosystem services under simulated climate and land-use changes,” ISRN Ecology, vol. 2011, Article ID 568723, 17 pages, 2011.
[22]  J. Chen, “Rapid urbanization in China: a real challenge to soil protection and food security,” Catena, vol. 69, no. 1, pp. 1–15, 2007.
[23]  J. A. Foley, N. Ramankutty, K. A. Brauman et al., “Solutions for a cultivated planet,” Nature, vol. 478, no. 7369, pp. 337–342, 2011.
[24]  G. I. Gavier-Pizarro, N. C. Calamari, J. J. Thompson et al., “Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce ecosystem service provision by changing avian density,” Agriculture, Ecosystems and Environment, vol. 154, pp. 44–55, 2012.
[25]  R. S. de Groot, M. A. Wilson, and R. M. J. Boumans, “A typology for the classification, description and valuation of ecosystem functions, goods and services,” Ecological Economics, vol. 41, no. 3, pp. 393–408, 2002.
[26]  P. Balvanera, A. B. Pfisterer, N. Buchmann et al., “Quantifying the evidence for biodiversity effects on ecosystem functioning and services,” Ecology Letters, vol. 9, no. 10, pp. 1146–1156, 2006.
[27]  S. Díaz, S. Lavorel, S. McIntyre et al., “Plant trait responses to grazing—a global synthesis,” Global Change Biology, vol. 13, no. 2, pp. 313–341, 2007.
[28]  V. H. Dale and S. Polasky, “Measures of the effects of agricultural practices on ecosystem services,” Ecological Economics, vol. 64, no. 2, pp. 286–296, 2007.
[29]  A. R. Nik, “Water yield changes after forest conversion to agricultural landuse in Peninsular Malaysia,” Journal of Tropical Forest Science, vol. 1, no. 1, pp. 67–82, 1988.
[30]  K. A. Farley, E. G. Jobbágy, and R. B. Jackson, “Effects of afforestation on water yield: a global synthesis with implications for policy,” Global Change Biology, vol. 11, no. 10, pp. 1565–1576, 2005.
[31]  V. Sahin and M. J. Hall, “The effects of afforestation and deforestation on water yields,” Journal of Hydrology, vol. 178, no. 1–4, pp. 293–309, 1996.
[32]  W. A. Hoffmann and R. B. Jackson, “Vegetation-climate feedbacks in the conversion of tropical savanna to Grassland,” Journal of Climate, vol. 13, no. 9, pp. 1593–1602, 2000.
[33]  R. A. Vertessy, F. G. R. Watson, and S. K. O'Sullivan, “Factors determining relations between stand age and catchment water balance in mountain ash forests,” Forest Ecology and Management, vol. 143, no. 1–3, pp. 13–26, 2001.
[34]  J. D. Stednick, “Monitoring the effects of timber harvest on annual water yield,” Journal of Hydrology, vol. 176, no. 1–4, pp. 79–95, 1996.
[35]  G. G. Ice and J. D. Stednick, A Century of Forest and Wildland Watershed Lessons, Society of American Foresters, 2004.
[36]  C. Raudsepp-Hearne, G. D. Peterson, and E. M. Bennett, “Ecosystem service bundles for analyzing tradeoffs in diverse landscapes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5242–5247, 2010.
[37]  J. Newcome, A. Provins, H. Johns et al., “The economic, social and ecological value of ecosystem services department for environment, food and rural affairs,” 2005, https://www.cbd.int/doc/case-studies/inc/cs-inc-uk6-en.pdf.
[38]  L. Tianhong, L. Wenkai, and Q. Zhenghan, “Variations in ecosystem service value in response to land use changes in Shenzhen,” Ecological Economics, vol. 69, no. 7, pp. 1427–1435, 2010.
[39]  S. Su, R. Xiao, Z. Jiang, and Y. Zhang, “Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale,” Applied Geography, vol. 34, no. 2, pp. 295–305, 2012.
[40]  R. C. Estoque and Y. Murayama, “Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: a scenario-based analysis,” Applied Geography, vol. 35, no. 1, pp. 316–326, 2012.
[41]  W. R. Turner, K. Brandon, T. M. Brooks, R. Costanza, G. A. B. Da Fonseca, and R. Portela, “Global conservation of biodiversity and ecosystem services,” BioScience, vol. 57, no. 10, pp. 868–873, 2007.
[42]  U. P. Kreuter, H. G. Harris, M. D. Matlock, and R. E. Lacey, “Change in ecosystem service values in the San Antonio area, Texas,” Ecological Economics, vol. 39, no. 3, pp. 333–346, 2001.
[43]  A. Troy and M. A. Wilson, “Mapping ecosystem services: practical challenges and opportunities in linking GIS and value transfer,” Ecological Economics, vol. 60, no. 2, pp. 435–449, 2006.
[44]  H. Tallis and S. Polasky, “Mapping and valuing ecosystem services as an approach for conservation and natural-resource management,” Annals of the New York Academy of Sciences, vol. 1162, pp. 265–283, 2009.
[45]  E. Nelson, G. Mendoza, J. Regetz et al., “Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales,” Frontiers in Ecology and the Environment, vol. 7, no. 1, pp. 4–11, 2009.
[46]  K. Chopra, Ecosystems and Human Well-Being: Policy Responses: Findings of the Responses Working Group, Island Press, 2005.
[47]  U. Nea, “The UK national ecosystem assessment,” in Synthesis of the Key Findings, UNEP-WCMC, Cambridge, UK, 2011.
[48]  D. Xie, X. Yu, and L. Chunxia, “Study on ecosystem services: progress, limitation and basic paradigm,” Acta Phytoecological Sinica, vol. 30, no. 2, article 191, 2006.
[49]  Y. Xiao, G. Xie, and K. An, “Economic value of ecosystem services in Mangcuo Lake drainage basin,” Chinese Journal of Applied Ecology, vol. 14, no. 5, pp. 676–680, 2003.
[50]  K. H. Riitters, J. D. Wickham, R. V. O'Neill et al., “Fragmentation of continental United States forests,” Ecosystems, vol. 5, no. 8, pp. 815–822, 2002.
[51]  S. Polasky, E. Nelson, D. Pennington, and K. A. Johnson, “The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota,” Environmental and Resource Economics, vol. 48, no. 2, pp. 219–242, 2011.
[52]  B. Fisher, K. Turner, M. Zylstra et al., “Ecosystem services and economic theory: integration for policy-relevant research,” Ecological Applications, vol. 18, no. 8, pp. 2050–2067, 2008.
[53]  E. Pereira, C. Queiroz, H. M. Pereira, and L. Vicente, “Ecosystem services and human well-being: a participatory study in a mountain community in Portugal,” Ecology and Society, vol. 10, no. 2, article 14, 2005.
[54]  G. C. Daily, S. Alexander, P. R. Ehrlich et al., Ecosystem Services: Benefits Supplied to Human Societies By Natural Ecosystems, Ecological Society of America, Washington, DC, USA, 1997.
[55]  J. D. Floros, R. Newsome, W. Fisher, et al., “The importance of food science and technology,” Comprehensive Reviews in Food Science and Food Safety, vol. 9, no. 5, pp. 572–599, 2010.
[56]  Z. L. Zhu and D. L. Chen, “Nitrogen fertilizer use in China—contributions to food production, impacts on the environment and best management strategies,” Nutrient Cycling in Agroecosystems, vol. 63, no. 2-3, pp. 117–127, 2002.
[57]  G. C. Nelson, E. Bennett, A. A. Berhe et al., “Anthropogenic drivers of ecosystem change: an overview,” Ecology and Society, vol. 11, no. 2, article 29, 2006.
[58]  C. F. Corvalan, S. Hales, and A. A. J. Mcmichael, Ecosystems and Human Well-Being: Health Synthesis, World Health Organization, Lyon, France, 2005.
[59]  C. D. Butler and W. Oluoch-Kosura, “Linking future ecosystem services and future human well-being,” Ecology and Society, vol. 11, no. 1, article 30, 2006.
[60]  L. E. Caulfield, M. de Onis, M. Bl?ssner, and R. E. Black, “Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles,” The American Journal of Clinical Nutrition, vol. 80, no. 1, pp. 193–198, 2004.
[61]  W. Aktar, D. Sengupta, and A. Chowdhury, “Impact of pesticides use in agriculture: their benefits and hazards,” Interdisciplinary Toxicology, vol. 2, no. 1, pp. 1–12, 2009.
[62]  R. N. M. Sehgal, “Deforestation and avian infectious diseases,” Journal of Experimental Biology, vol. 213, no. 6, pp. 955–960, 2010.
[63]  J. Patz, A. Githeko, J. Mccarty, S. Hussein, U. Confalonieri, and N. de Wet, “Climate change and infectious diseases,” in Climate Change and Human Health: Risks and Responses, pp. 103–137, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413