全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modeling the Impacts of Boreal Deforestation on the Near-Surface Temperature in European Russia

DOI: 10.1155/2013/486962

Full-Text   Cite this paper   Add to My Lib

Abstract:

Boreal deforestation plays an important role in affecting regional and global climate. In this study, the regional temperature variation induced by future boreal deforestation in European Russia boreal forest region was simulated based on future land cover change and the Weather Research and Forecasting (WRF) model. This study firstly tested and validated the simulation results of the WRF model. Then the land cover datasets in different years (2000 as baseline year, 2010, and 2100) was used in the WRF model to explore the impacts of boreal deforestation on the near-surface temperature. The results indicated that the WRF model has good ability to simulate the temperature change in European Russia. The land cover change in European Russia boreal forest region, which will be characterized by the conversion from boreal forests to croplands (boreal deforestation) in the future 100 years, will lead to significant change of the near-surface temperature. The regional annual temperature will decrease by 0.58°C in the future 100 years, resulting in cooling effects to some extent and making the near-surface temperature decrease in most seasons except the spring. 1. Introduction According to the fourth assessment report of Intergovernmental Panel on Climate Change (2007, IPCC AR4), there is a probability of more than 90 percent that human activities have affected the climate [1], mainly through two approaches: fossil fuel burning and land cover change. There is a consensus among the scientists that fossil fuel burning can lead to increase in the greenhouse gas concentration in the atmosphere and further results in the global warming, while the impacts of land cover change on the climate system at the local, regional, and global scales have become one of the research hotspots. Terrestrial land cover is an important component of the climate system. It is the most direct source not only of the atmospheric heat, but also of the atmospheric moisture. Therefore, land cover change will directly affect the surface-atmosphere interactions and further influence the atmospheric thermodynamic characteristics. The land use activities significantly changed the regional land cover and exerted great impacts on the climate system at regional scale, including temperature, evapotranspiration, precipitation, wind, and air pressure. The impacts of land cover change on climate can be divided into two major categories, that is, biogeochemical and biogeophysical impacts [2]. The biogeochemical processes mainly refer to greenhouse gas emissions caused by the land cover change, changing the

References

[1]  S. Solomon, D. Qin, M. Manning et al., Climate Change 2007: The Physical Science Basis, Cambridge University Press, New York, NY, USA, 2007.
[2]  J. J. Feddema, K. W. Oleson, G. B. Bonan et al., “Atmospheric science: the importance of land-cover change in simulating future climates,” Science, vol. 310, no. 5754, pp. 1674–1678, 2005.
[3]  G. B. Bonan, “Forests and climate change: forcings, feedbacks, and the climate benefits of forests,” Science, vol. 320, no. 5882, pp. 1444–1449, 2008.
[4]  G. B. Bonan, Ecological Climatology: Concepts and Applications, Cambridge University Press, 2002.
[5]  M. H. Costa and J. A. Foley, “Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia,” Journal of Climate, vol. 13, no. 1, pp. 18–34, 2000.
[6]  R. E. Dickinson and A. Henderson-Sellers, “Modelling tropical deforestation: a study of GCM land/surface parametrizations,” Quarterly Journal, vol. 114, no. 480, pp. 439–462, 1988.
[7]  N. Gedney and P. J. Valdes, “The effect of Amazonian deforestation on the northern hemisphere circulation and climate,” Geophysical Research Letters, vol. 27, no. 19, pp. 3053–3056, 2000.
[8]  A. Henderson-Sellers, R. E. Dickinson, T. B. Durbidge, P. J. Kennedy, K. McGuffie, and A. J. Pitman, “Tropical deforestation: modeling local- to regional-scale climate change,” Journal of Geophysical Research, vol. 98, no. 4, pp. 7289–7315, 1993.
[9]  S. Bathiany, M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler, “Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model,” Biogeosciences, vol. 7, no. 5, pp. 1383–1399, 2010.
[10]  E. L. Davin and N. de Noblet-Ducoudre, “Climatic impact of global-scale Deforestation: radiative versus nonradiative processes,” Journal of Climate, vol. 23, no. 1, pp. 97–112, 2010.
[11]  G. Bala, K. Caldeira, M. Wickett et al., “Combined climate and carbon-cycle effects of large-scale deforestation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 16, pp. 6550–6555, 2007.
[12]  X. Lee, M. L. Goulden, D. Y. Hollinger et al., “Observed increase in local cooling effect of deforestation at higher latitudes,” Nature, vol. 479, no. 7373, pp. 384–387, 2011.
[13]  R. A. Pielke Sr., G. Marland, R. A. Betts et al., “The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases,” Philosophical Transactions of the Royal Society A, vol. 360, no. 1797, pp. 1705–1719, 2002.
[14]  P. J. Lawrence and T. N. Chase, “Investigating the climate impacts of global land cover change in the community climate system model,” International Journal of Climatology, vol. 30, no. 13, pp. 2066–2087, 2010.
[15]  E. Ellis and R. Pontius, “Land-use and land-cover change,” Encyclopedia of Earth, Environmental Information Coalition, National Council for Science and the Environment, Washington, DC, USA, 2007, http://www.eoearth.org/article/Landuse_and_land-cover_change.
[16]  G. B. Bonan, D. Pollard, and S. L. Thompson, “Effects of boreal forest vegetation on global climate,” Nature, vol. 359, no. 6397, pp. 716–718, 1992.
[17]  V. Brovkin, A. Ganopolski, M. Claussen, C. Kubatzki, and V. Petoukhov, “Modelling climate response to historical land cover change,” Global Ecology and Biogeography, vol. 8, no. 6, pp. 509–517, 1999.
[18]  B. Govindasamy, P. B. Duffy, and K. Caldeira, “Land use changes and Northern Hemisphere cooling,” Geophysical Research Letters, vol. 28, no. 2, pp. 291–294, 2001.
[19]  P. K. Snyder, C. Delire, and J. A. Foley, “Evaluating the influence of different vegetation biomes on the global climate,” Climate Dynamics, vol. 23, no. 3-4, pp. 279–302, 2004.
[20]  R. A. Pielke Sr., R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and A. S. Denning, “Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate,” Global Change Biology, vol. 4, no. 5, pp. 461–475, 1998.
[21]  I. S. Kang, K. Jin, B. Wang et al., “Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs,” Climate Dynamics, vol. 19, no. 5-6, pp. 383–395, 2002.
[22]  V. Brovkin, M. Claussen, E. Driesschaert et al., “Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity,” Climate Dynamics, vol. 26, no. 6, pp. 587–600, 2006.
[23]  E. T. Yu, H. J. Wang, and J. Q. Sun, “A quick report on a dynamical downscaling simulation over China using the nested model,” Atmospheric and Oceanic Science Letters, vol. 3, no. 6, pp. 325–329, 2010.
[24]  H. Von Storch, E. Zorita, and U. Cubasch, “Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime,” Journal of Climate, vol. 6, no. 6, pp. 1161–1171, 1993.
[25]  J. M. Jin, N. L. Miller, and N. Schlegel, “Sensitivity study of four land surface schemes in the WRF model,” Advances in Meteorology, vol. 2010, Article ID 167436, 11 pages, 2010.
[26]  P. Caldwell, H.-N. S. Chin, D. C. Bader, and G. Bala, “Evaluation of a WRF dynamical downscaling simulation over California,” Climatic Change, vol. 95, no. 3-4, pp. 499–521, 2009.
[27]  C. V. Srinivas, D. Hariprasad, D. V. Bhaskar Rao, Y. Anjaneyulu, R. Baskaran, and B. Venkatraman, “Simulation of the Indian summer monsoon regional climate using advanced research WRF model,” International Journal of Climatology, vol. 33, no. 5, pp. 1195–1210, 2013.
[28]  M. Baumann, M. Ozdogan, T. Kuemmerle, K. J. Wendland, E. Esipova, and V. C. Radeloff, “Using the Landsat record to detect forest-cover changes during and after the collapse of the Soviet Union in the temperate zone of European Russia,” Remote Sensing of Environment, vol. 124, pp. 174–184, 2012.
[29]  M. C. Hansen, S. V. Stehman, and P. V. Potapov, “Quantification of global gross forest cover loss,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8650–8655, 2010.
[30]  P. Potapov, S. Turubanova, and M. C. Hansen, “Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia,” Remote Sensing of Environment, vol. 115, no. 2, pp. 548–561, 2011.
[31]  F. Wu, J. Y. Zhan, H. M. Yan, C. C. Shi, and J. Huang, “Land cover mapping based on multisource spatial data mining approach for climate simulation: a case study in the farming-pastoral ecotone of North China,” Advances in Meteorology, vol. 2013, Article ID 520803, 12 pages, 2013.
[32]  G. C. Hurtt, L. P. Chini, S. Frolking et al., “Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands,” Climatic Change, vol. 109, no. 1, pp. 117–161, 2011.
[33]  J. Jin and N. L. Miller, “Analysis of the impact of snow on daily weather variability in mountainous regions using MM5,” Journal of Hydrometeorology, vol. 8, no. 2, pp. 245–258, 2007.
[34]  R. Mawalagedara and R. J. Oglesby, “The climatic effects of deforestation in south and southeast Asia,” Deforestation Around the World, 2011.
[35]  N. S. Keenlyside, M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, “Advancing decadal-scale climate prediction in the North Atlantic sector,” Nature, vol. 453, no. 7191, pp. 84–88, 2008.
[36]  K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An overview of CMIP5 and the experiment design,” Bulletin of the American Meteorological Society, vol. 93, no. 4, pp. 485–498, 2012.
[37]  M. A. Hernandez-Ceballos, J. A. Adame, J. P. Bolivar, and B. A. De La Morena, “A mesoscale simulation of coastal circulation in the Guadalquivir valley (southwestern Iberian Peninsula) using the WRF-ARW model,” Atmospheric Research, vol. 124, pp. 1–20, 2013.
[38]  J. Chen, P. Zhao, H. Liu, and X. Guo, “Modeling impacts of vegetation in western China on the summer climate of northwestern China,” Advances in Atmospheric Sciences, vol. 26, no. 4, pp. 803–812, 2009.
[39]  A. Garcia-R, T. Schoenemeyer, A. Jazcilevich D., G. Ruiz-Suárez, and V. Fuentes-Gea, “Implementation of the multiscale climate chemistry model (MCCM) for Central Mexico,” in Proceedings of the International Conference on Air Pollution, pp. 71–78, July 2000.
[40]  A. D. Jazcilevich, A. R. García, and L. G. Ruíz-Suárez, “A modeling study of air pollution modulation through land-use change in the Valley of Mexico,” Atmospheric Environment, vol. 36, no. 14, pp. 2297–2307, 2002.
[41]  M. Mohan and S. Bhati, “Analysis of WRF model performance over subtropical region of Delhi, India,” Advances in Meteorology, vol. 2011, Article ID 621235, 13 pages, 2011.
[42]  Y. L. Lin, R. D. Farley, and H. D. Orville, “Bulk parameterization of the snow field in a cloud model,” Journal of Climate & Applied Meteorology, vol. 22, no. 6, pp. 1065–1092, 1983.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133