Numerical experiments over the past years indicate that incorporating environmental variability is crucial for successful very short-range convective-scale forecasts. To explore the impact of model physics on the creation of environmental variability and its uncertainty, combined mesoscale-convective scale data assimilation experiments are conducted for a tornadic supercell storm. Two 36-member WRF-ARW model-based mesoscale EAKF experiments are conducted to provide background environments using either fixed or multiple physics schemes across the ensemble members. Two 36-member convective-scale ensembles are initialized using background fields from either fixed physics or multiple physics mesoscale ensemble analyses. Radar observations from four operational WSR-88Ds are assimilated into convective-scale ensembles using ARPS model-based 3DVAR system and ensemble forecasts are launched. Results show that the ensemble with background fields from multiple physics ensemble provides more realistic forecasts of significant tornado parameter, dryline structure, and near surface variables than ensemble from fixed physics background fields. The probabilities of strong low-level updraft helicity from multiple physics ensemble correlate better with observed tornado and rotation tracks than probabilities from fixed physics ensemble. This suggests that incorporating physics diversity across the ensemble can be important to successful probabilistic convective-scale forecast of supercell thunderstorms, which is the main goal of NOAA’s Warn-on-Forecast initiative. 1. Introduction The development and evolution of severe thunderstorm events are strongly tied to the environment, and therefore incorporating mesoscale environmental variability and its uncertainty is crucial for successful convective-scale data assimilation and forecasts [1–3]. Several studies illustrate the importance of incorporating the influence of environmental variability and mesoscale forcing on the storm scale flows for accurate prediction of tornadic supercell thunderstorms ([4, 5]). In particular, when Stensrud and Gao [4] use a more realistic inhomogeneous mesoscale environment as initial and boundary conditions for their convective-scale three-dimensional variational (3DVAR) data assimilation and forecast system, substantial improvement in forecast accuracy is obtained over a similar convective-scale system using a homogeneous, single-sounding environment, which is typical of idealized storm modeling studies. Yussouf et al. [6] investigate the benefits of using a combined mesoscale-convective scale
References
[1]
A. Aksoy, D. C. Dowell, and C. Snyder, “A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: storm-scale analyses,” Monthly Weather Review, vol. 137, no. 6, pp. 1805–1824, 2009.
[2]
A. Aksoy, D. C. Dowell, and C. Snyder, “A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: short-range ensemble forecasts,” Monthly Weather Review, vol. 138, no. 4, pp. 1273–1292, 2010.
[3]
R. M. Cintineo and D. J. Stensrud, “On the predictability of supercell thunderstorm evolution,” Journal of Atmospheric Science, vol. 70, pp. 1993–2011, 2013.
[4]
D. J. Stensrud and J. Gao, “Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short-range forecasts,” Monthly Weather Review, vol. 138, no. 4, pp. 1250–1272, 2010.
[5]
C. L. Ziegler, E. R. Mansell, J. M. Straka, D. R. Macgorman, and D. W. Burgess, “The impact of spatial variations of low-level stability on the life cycle of a simulated supercell storm,” Monthly Weather Review, vol. 138, no. 5, pp. 1738–1766, 2010.
[6]
N. Yussouf, E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, “The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City Tornadic Supercell Storm using single and double moment microphysics schemes,” Monthly Weather Review, 2013.
[7]
C. S. Schwartz, J. S. Kain, S. J. Weiss et al., “Next-day convection-allowing WRF model guidance: a second look at 2-km versus 4-km grid spacing,” Monthly Weather Review, vol. 137, no. 10, pp. 3351–3372, 2009.
[8]
C. S. Schwartz, J. S. Kain, S. J. Weiss et al., “Toward improved convection-allowing ensembles: model physics sensitivities and optimizing probabilistic guidance with small ensemble membership,” Weather and Forecasting, vol. 25, no. 1, pp. 263–280, 2010.
[9]
G. S. Romine, C. S. Schwartz, C. Snyder, J. L. Anderson, and M. L. Weisman, “Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts,” Monthly Weather Review, vol. 141, pp. 1263–1284, 2013.
[10]
B. C. Ancell, “Examination of analysis and forecast errors of high-resolution assimilation, Bias removal, and digital filter initialization with an ensemble Kalman filter,” Monthly Weather Review, vol. 140, pp. 3992–4004, 2012.
[11]
D. J. Stensrud, J.-W. Bao, and T. T. Warner, “Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems,” Monthly Weather Review, vol. 128, no. 7 I, pp. 2077–2107, 2000.
[12]
T. Fujita, D. J. Stensrud, and D. C. Dowell, “Surface data assimilation using an ensemble Kalman filter approach with initial condition and model physics uncertainties,” Monthly Weather Review, vol. 135, no. 5, pp. 1846–1868, 2007.
[13]
T. M. Hamill, R. S. Schneider, H. E. Brooks et al., “The May 2003 extended tornado outbreak,” Bulletin of the American Meteorological Society, vol. 86, no. 4, pp. 531–542, 2005.
[14]
M. Hu and M. Xue, “Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case,” Monthly Weather Review, vol. 135, no. 2, pp. 507–525, 2007.
[15]
T. M. Lei, M. Xue, and T. Yu, “Multi-scale analysis and prediction of the 8 May 2003 Oklahoma City tornadic supercell storm assimilating radar and surface network data using EnKF,” in Proceedings of the 13th Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS '09), The American Meteorological Society, 2009.
[16]
D. C. Dowell, L. J. Wicker, and C. Snyder, “Ensemble kalman filter assimilation of radar observations of the 8 may 2003 oklahoma city supercell: influences of reflectivity observations on storm-scale analyses,” Monthly Weather Review, vol. 139, no. 1, pp. 272–294, 2011.
[17]
Z. Meng and F. Zhang, “Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: comparison with 3DVAR in a month-long experiment,” Monthly Weather Review, vol. 136, no. 10, pp. 3671–3682, 2008.
[18]
D. J. Stensrud, N. Yussouf, D. C. Dowell, and M. C. Coniglio, “Assimilating surface data into a mesoscale model ensemble: cold pool analyses from spring 2007,” Atmospheric Research, vol. 93, no. 1–3, pp. 207–220, 2009.
[19]
D. M. Wheatley, D. J. Stensrud, D. C. Dowell, and N. Yussouf, “Application of a WRF mesoscale data assimilation system to springtime severe weather events 2007–09,” Monthly Weather Review, vol. 140, pp. 1539–1557, 2012.
[20]
G. S. Romine, D. W. Burgess, and R. B. Wilhelmson, “A dual-polarization-radar-based assessment of the 8 May 2003 Oklahoma City Area tornadic supercell,” Monthly Weather Review, vol. 136, no. 8, pp. 2849–2870, 2008.
[21]
W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A description of the Advanced Research WRF version 2,” Tech. Rep., NCAR, TN-468+STR, 2005.
[22]
D. F. Parrish and J. C. Derber, “The National Meteorological Center's spectral statistical- interpolation analysis system,” Monthly Weather Review, vol. 120, no. 8, pp. 1747–1763, 1992.
[23]
R. D. Torn, G. J. Hakim, and C. Snyder, “Boundary conditions for limited-area ensemble Kalman filters,” Monthly Weather Review, vol. 134, no. 9, pp. 2490–2502, 2006.
[24]
G. Thompson, P. R. Field, R. M. Rasmussen, and W. D. Hall, “Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization,” Monthly Weather Review, vol. 136, no. 12, pp. 5095–5115, 2008.
[25]
M. Tiedtke, “A comprehensive mass flux scheme for cumulus parameterization in large-scale models,” Monthly Weather Review, vol. 117, no. 8, pp. 1779–1800, 1989.
[26]
C. Zhang, Y. Wang, and K. Hamilton, “Improved representation of boundary layer clouds over the southeast pacific in ARW-WRF using a modified tiedtke cumulus parameterization scheme,” Monthly Weather Review, vol. 139, no. 11, pp. 3489–3513, 2011.
[27]
S.-Y. Hong, Y. Noh, and J. Dudhia, “A new vertical diffusion package with an explicit treatment of entrainment processes,” Monthly Weather Review, vol. 134, no. 9, pp. 2318–2341, 2006.
[28]
F. Chen and J. Dudhia, “Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity,” Monthly Weather Review, vol. 129, no. 4, pp. 569–585, 2001.
[29]
J. L. Anderson, “An ensemble adjustment Kalman filter for data assimilation,” Monthly Weather Review, vol. 129, no. 12, pp. 2884–2903, 2001.
[30]
J. L. Anderson and N. Collins, “Scalable implementations of ensemble filter algorithms for data assimilation,” Journal of Atmospheric and Oceanic Technology, vol. 24, no. 8, pp. 1452–1463, 2007.
[31]
J. Anderson, T. Hoar, K. Raeder et al., “The data assimilation research testbed a community facility,” Bulletin of the American Meteorological Society, vol. 90, no. 9, pp. 1283–1296, 2009.
[32]
G. Gaspari and S. E. Cohn, “Construction of correlation functions in two and three dimensions,” Quarterly Journal of the Royal Meteorological Society, vol. 125, no. 554, pp. 723–757, 1999.
[33]
M. Xue, K. K. Droegemeier, and V. Wong, “The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification,” Meteorology and Atmospheric Physics, vol. 75, no. 3-4, pp. 161–193, 2000.
[34]
M. Xue, K. K. Droegemeier, V. Wong et al., “The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications,” Meteorology and Atmospheric Physics, vol. 76, no. 3-4, pp. 143–165, 2001.
[35]
J. Gao, M. Xue, A. Shapiro, and K. K. Droegemeier, “A variational method for the analysis of three-dimensional wind fields from two Doppler radars,” Monthly Weather Review, vol. 127, no. 9, pp. 2128–2142, 1999.
[36]
J. Gao, M. Xue, K. Brewster, F. Carr, and K. K. Droegemeier, “New development of a 3DVAR system for a nonhydrostatic NWP model,” in Proceedings of the 15th Conference of Numical Weather Prediction and 19th Conference of Weather Analyses and Forecasting, pp. 339–341, The American Meteorological Society, San Antonio, Tex, USA, 2002.
[37]
J. Gao, M. Xue, K. Brewster, and K. K. Droegemeier, “A three-dimensional variational data analysis method with recursive filter for Doppler radars,” Journal of Atmospheric and Oceanic Technology, vol. 21, no. 3, pp. 457–469, 2004.
[38]
K. A. Brewster, “Recent advances in diabatic initialization of a non-hydrostatic numerical model,” in Proceedings of the 15th Conference on Numerical Weather Prediction and 21st Conference on Severe Local Storms, American Meteorological Society, San Antonio, Tex, USA, 2001.
[39]
A. J. Clark, S. J. Weiss, J. S. Kain et al., “An overview of the 2010 Hazardous Weather Testbed experimental forecast program spring experiment,” Bulletin of the American Meteorological Society, vol. 93, no. 1, pp. 55–74, 2012.
[40]
A. J. Clark, J. S. Kain, P. T. Marsh, J. Correia, M. Xue, and F. Kong, “Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts,” Weather and Forecasting, vol. 27, pp. 1090–1113, 2012.
[41]
A. J. Clark, J. Gao, P. T. Marsh et al., “Tornado path length forecasts from 2010-2011 using ensemble updraft helicity,” Weather and Forecasting, vol. 28, pp. 387–407, 2013.
[42]
J. Gao, T. T. Smith, and D. J. Stensrud, “A realtime weather-adaptive 3DVAR analysis system for severe weather detections and warnings,” Weather and Forecasting, vol. 28, pp. 727–745, 2013.
[43]
Y.-L. Lin, R. D. Farley, and H. D. Orville, “Bulk parameterization of the snow field in a cloud model,” Journal of Climate & Applied Meteorology, vol. 22, no. 6, pp. 1065–1092, 1983.
[44]
G. L. Mellor and T. Yamada, “Development of a turbulence closure model for geophysical fluid problems,” Reviews of Geophysics & Space Physics, vol. 20, no. 4, pp. 851–875, 1982.
[45]
Z. I. Janjic, “Nonsingular implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso model,” NCEP Office Note 437, 61, 2002.
[46]
J. Dudhia, “Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model,” Journal of the Atmospheric Sciences, vol. 46, no. 20, pp. 3077–3107, 1989.
[47]
E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” Journal of Geophysical Research D, vol. 102, no. 14, pp. 16663–16682, 1997.
[48]
K. Brewster, M. Hu, M. Xue, and J. Gao, “Efficient assimilation of radar data at high resolution for short-range numerical weather prediction,” in Proceedings of the WWRP International Symposium on Nowcasting and Very Short Range Forecasting, Toulouse, France, 2005.
[49]
R. A. McPherson, C. A. Fiebrich, K. C. Crawford et al., “Statewide monitoring of the mesoscale environment: a technical update on the Oklahoma Mesonet,” Journal of Atmospheric and Oceanic Technology, vol. 24, no. 3, pp. 301–321, 2007.
[50]
D. S. Wilks, Statistical Methods in the Atmospheric Sciences, Academic Press, Boston, Mass, USA, 2nd edition, 2006.
[51]
C. E. Hane, R. M. Rabin, T. M. Crawford, H. B. Bluestein, and M. E. Baldwin, “A case study of severe storm development along a dryline within a synoptically active environment. Part II: multiple boundaries and convective initiation,” Monthly Weather Review, vol. 130, no. 4, pp. 900–920, 2002.
[52]
R. L. Thompson, R. Edwards, and J. A. Hart, “Evaluation and interpretation of the supercell composite and significant tornado parameters at the Storm Prediction Center,” in Proceedings of the 21st Conference on Severe Local Storms, American Metrological Society, San Antonio, Tex, USA, 2002.
[53]
H. E. Brooks, C. A. Doswell III, and J. Cooper, “On the environments of tornadic and nontornadic mesocyclones,” Weather & Forecasting, vol. 9, no. 4, pp. 606–618, 1994.
[54]
J. S. Kain, S. J. Weiss, D. R. Bright et al., “Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP,” Weather and Forecasting, vol. 23, no. 5, pp. 931–952, 2008.
[55]
J. R. Carley, B. R. J. Schwedler, M. E. Baldwin et al., “A proposed model-based methodology for feature-specific prediction for high-impact weather,” Weather and Forecasting, vol. 26, no. 2, pp. 243–249, 2011.
[56]
R. J. Trapp, E. D. Robinson, M. E. Baldwin, N. S. Diffenbaugh, and B. R. J. Schwedler, “Regional climate of hazardous convective weather through high-resolution dynamical downscaling,” Climate Dynamics, vol. 37, no. 3, pp. 677–688, 2011.
[57]
M. L. Miller, V. Lakshmanan, and T. Smith, “An automated method for depicting mesocyclone paths and intensities,” Weather and Forecasting, vol. 28, pp. 570–585, 2013.
[58]
V. Lakshmanan, T. Smith, G. Stumpf, and K. Hondl, “The warning decision support system-integrated information,” Weather and Forecasting, vol. 22, no. 3, pp. 596–612, 2007.
[59]
G. H. Bryan, J. C. Wyngaard, and J. M. Fritsch, “Resolution requirements for the simulation of deep moist convection,” Monthly Weather Review, vol. 131, pp. 2394–2416, 2003.
[60]
G. H. Bryan and H. Morrison, “Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics,” Monthly Weather Review, vol. 140, no. 1, pp. 202–225, 2012.
[61]
N. Yussouf and D. J. Stensrud, “Comparison of single-parameter and multiparameter ensembles for assimilation of radar observations using the ensemble kalman filter,” Monthly Weather Review, vol. 140, no. 2, pp. 562–586, 2012.
[62]
N. Snook, M. Xue, and Y. Jung, “Analysis of a tornadic mesoscale convective vortex based on ensemble kalman filter assimilation of CASA X-band and WSR-88D radar data,” Monthly Weather Review, vol. 139, no. 11, pp. 3446–3468, 2011.
[63]
N. Snook, M. Xue, and J. Jung, “Ensemble probabilistic forecasts of a tornadic mesoscale convective system from ensemble Kalman filter analyses using WSR-88D and CASA radar data,” Monthly Weather Review, vol. 140, pp. 2126–2146, 2012.