全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Impacts of Land Cover Change on the Near-Surface Temperature in the North China Plain

DOI: 10.1155/2013/409302

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study first tested and verified the ability of the Weather Research and Forecasting (WRF) model to simulate the near-surface temperature in the North China Plain. Then the static land cover data in the WRF were replaced, and thereafter the modified WRF model was used to explore the impacts of land cover change on the near-surface temperature in the North China Plain in year 1992 and year 2005. The results indicated that the land cover change in the North China Plain, which was characterized by the regional urbanization, had led to significant changes in the near-surface temperature, increasing the regional near-surface temperature by 0.03°C/year on average. The spatial pattern of the climate change basically corresponded to that of the land cover change; for example, the temperature increased most significantly in the regions mainly consisting of cities and built-up area. Besides, there were some variations in the degree and range of influence of the land cover change on the temperature among seasons. The result can provide important theoretical support for the adaptation to climate change, scientific land cover change management, and land use planning. 1. Introduction More and more attention has been paid to the influence of human activities on the climate system in recent years as great progress has been made in the researches on the global climate system and environmental change. IPCC AR4 pointed out that the human activities may account for 90% of the reasons for the global warming. There is very complex influence of human activities on the climate, with the land use/cover change (LUCC) being considered as the major influencing factor in the climate system [1]. The LUCC influences the climate system at various temporal and spatial scales, and the land use change has contributed to 1/3 of the increase in global CO2 emission since the 1750s. Besides, a lot of observations and simulation experiments also indicate that the LUCC at various spatial scales has been one of the most important approaches through which the human activities exert influence on the climate [2–4]. The LUCC mainly influences the climate at the local, regional, and global scales by changing the land surface characteristics, altering the exchange of energy, water, and other materials between the land surface and the atmosphere and influencing other biogeochemical processes. There is great variation in the biogeochemical mechanism through which the LUCC influences the climate in different regions; the climate change caused by LUCC is mainly through the land-atmosphere interaction

References

[1]  National Research Council, “Radiative forcing of climate change: expanding the concept and addressing uncertainties,” Tech. Rep., National Research Council, Washington, DC, USA, 2005.
[2]  M. Cai and E. Kalnay, “Response to the comments by Vose et al. and Trenberth. Impact of land-use change on climate,” Nature, vol. 95, pp. 427–214, 2004.
[3]  J. J. Feddema, K. W. Oleson, G. B. Bonan et al., “Atmospheric science: the importance of land-cover change in simulating future climates,” Science, vol. 310, no. 5754, pp. 1674–1678, 2005.
[4]  R. Mahmood, S. A. Foster, and D. Logan, “The GeoProfile metadata, exposure of instruments, and measurement bias in climatic record revisited,” International Journal of Climatology, vol. 26, no. 8, pp. 1091–1124, 2006.
[5]  A. Jazcilevich, V. Fuentes, E. Jauregui, and E. Luna, “Simulated urban climate response to historical land use modification in the Basin of Mexico,” Climatic Change, vol. 44, no. 4, pp. 515–536, 2000.
[6]  A. D. Jazcilevich, A. R. García, and L. G. Ruíz-Suárez, “A modeling study of air pollution modulation through land-use change in the Valley of Mexico,” Atmospheric Environment, vol. 36, no. 14, pp. 2297–2307, 2002.
[7]  A. D. Jazcilevich, A. R. García, and L. G. Ruíz-Suárez, “A study of air flow patterns affecting pollutant concentrations in the Central Region of Mexico,” Atmospheric Environment, vol. 37, no. 2, pp. 183–193, 2003.
[8]  Q. P. Li and Y. H. Ding, “Research progress in the effect of vegetation change on regional climate,” Journal of Nanjing Institute of Meteorology, vol. 27, no. 1, pp. 131–140, 2004.
[9]  J. Chen, P. Zhao, H. Liu, and X. Guo, “Modeling impacts of vegetation in western China on the summer climate of northwestern China,” Advances in Atmospheric Sciences, vol. 26, no. 4, pp. 803–812, 2009.
[10]  A. Seth and F. Giorgi, “The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model,” Journal of Climate, vol. 11, no. 17, pp. 2698–2712, 1998.
[11]  S. Y. Liu, CWRF Application in East China Monsoon Area, Nanjing University of Information Science and Technology, Nanjing, China, 2006.
[12]  A. J. Arnfield, “Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island,” International Journal of Climatology, vol. 23, no. 1, pp. 1–26, 2003.
[13]  G. T. Johnson, T. R. Oke, T. J. Lyons, D. G. Steyn, I. D. Watson, and J. A. Voogt, “Simulation of surface urban heat islands under ‘IDEAL' conditions at night part 1: theory and tests against field data,” Boundary-Layer Meteorology, vol. 56, no. 3, pp. 275–294, 1991.
[14]  Y. Lim, M. Cai, E. Kalnay, and L. Zhou, “Observational evidence of sensitivity of surface climate changes to land types and urbanization,” Geophysical Research Letters, vol. 32, no. 22, Article ID L22712, 4 pages, 2005.
[15]  W. Z. Su, Y. B. Yang, and G. S. Yang, “Distributional characteristics of urban thermal space and relations with land use/cover of Nanjing,” Scientia Geographica Sinica, vol. 25, no. 6, pp. 697–703, 2005.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133