A novel model of image segmentation based on watershed method is proposed in this paper. To prevent the oversegmentation of traditional watershed, our proposed algorithm has five stages. Firstly, the morphological reconstruction is applied to smooth the flat area and preserve the edge of the image. Secondly, multiscale morphological gradient is used to avoid the thickening and merging of the edges. Thirdly, for contrast enhancement, the top/bottom hat transformation is used. Fourthly, the morphological gradient of an image is modified by imposing regional minima at the location of both the internal and the external markers. Finally, a weighted function is used to combine the top/bottom hat transformation algorithm and the markers algorithm to get the new algorithm. The experimental results show the superiority of the new algorithm in terms of suppression over-segmentation. 1. Introduction A segmentation divides an image into its constituent regions or objects, and the segmentation must be stopped when the objects of interest in an application have been isolated [1]. Image segmentation is based on three principal concepts: edge detection, thresholding, and region growing. The most common one is thresholding. Thresholding has a high speed of operation and ease of implementation. However its performance is relatively limited since image pixels with the same gray level value will invariably be segmented into the same class [2]. Segmentation by morphological watersheds [3–10] embodies many of the concepts of the other three approaches, which produces more stable segmentation results, as well as providing simple framework. A simple watershed transformation causes oversegmentation [11]. In order to prevent this oversegmentation, the watershed method passed through several stages of evolution. The original watershed method was developed by Lantuejoul [12] and was widely described together with its applications by Beucher and Meyer [13]. The authors in [3] used FIFO queues to extend the original evolution with gray scale images [11]. Shafarenko et al. [14] applied FIFO to color images. In this paper we enhance the contrast of the gradient image by top/bottom hat transformation, modify the result of the enhancement by imposing regional minima at the locations of both the internal and the external markers, combine the top/bottom hat transformation algorithm and the markers algorithm by using suitable weight function, and subject the combination to the watershed algorithm. The new algorithm has a capability to prevent oversegmentation of the simple watershed
References
[1]
R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using Matlab, Publishing House of Electronics Industry, Beijing, China, 2009.
[2]
C. F. Sin and C. K. Leung, “Image segmentation by changing template block by block,” in Proceedings of the IEEE Region 10th International Conference on Electrical and Electronic Technology, vol. 1, pp. 302–305, China, August 2001.
[3]
L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583–598, 1991.
[4]
K. Nallaperumal, K. Krishnaveni, J. Varghese, S. Saudia, S. Annam, and P. Kumar, “A novel multi-scale morphological watershed segmentation algorithm,” International Journal of Imaging Science and Engineering, vol. 1, no. 2, pp. 60–64, 2007.
[5]
M. Pesaresi and J. A. Benediktsson, “A new approach for the morphological segmentation of high-resolution satellite imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 2, pp. 309–320, 2001.
[6]
K. Haris, S. N. Efstratiadis, N. Maglaveras, and A. K. Katsaggelos, “Hybrid image segmentation using watersheds and fast region merging,” IEEE Transactions on Image Processing, vol. 7, no. 12, pp. 1684–1699, 1998.
[7]
S. Mukhopadhyay and B. Chanda, “Multiscale morphological segmentation of gray-scale images,” IEEE Transactions on Image Processing, vol. 12, no. 5, pp. 533–549, 2003.
[8]
H. T. Nguyen, M. Worring, and R. van den Boomgaard, “Watersnakes: energy-driven watershed segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 3, pp. 330–342, 2003.
[9]
G. Hamarneh and X. Li, “Watershed segmentation using prior shape and appearance knowledge,” Image and Vision Computing, vol. 27, no. 1-2, pp. 59–68, 2009.
[10]
X. Han, Y. Fu, and H. Zhang, “A fast two-step marker-controlled watershed image segmentation method,” in Proceedings of the IEEE International Conference on Mechatronics and Automation, pp. 1375–1380, Beijing, China, 2012.
[11]
P. R. Hill, C. N. Canagarajah, and D. R. Bull, “Image segmentation using a texture gradient based watershed transform,” IEEE Transactions on Image Processing, vol. 12, no. 12, pp. 1618–1633, 2003.
[12]
C. Lantuejoul, La Squelettisatoin et son Application aux Mesures Topologiques des Mosaiques Polycristalines [Ph.D. dissertation], School of Mines, Paris, France, 1978.
[13]
S. Beucher and F. Meyer, “The morphological approach to segmentation: the watershed transformation,” in Mathematical Morphology and Its Applications to Image Processing, E. R. Dougherty, Ed., vol. 34, pp. 433–481, Marcel Dekker, New York, NY, USA, 1993.
[14]
L. Shafarenko, M. Petrou, and J. Kittler, “Automatic watershed segmentation of randomly textured color images,” IEEE Transactions on Image Processing, vol. 6, no. 11, pp. 1530–1544, 1997.
[15]
Y. Liu and Q. Zhao, “An improved watershed algorithm based on multi-scale gradient and distance transformation,” in Proceedings of the IEEE 3rd International Congress on Image and Signal Processing (CISP '10), pp. 3750–3754, Yantai, China, October 2010.
[16]
D. Wang, “A multiscale gradient algorithm for image segmentation using watersheds,” Pattern Recognition, vol. 30, no. 12, pp. 2043–2052, 1997.
[17]
R. C. Gonzalez and R. E. Woods, Digital Image Processing, Publishing House of Electronics Industry, Beijing, China, 3rd edition, 2010.
[18]
A. C. Jalba, M. H. F. Wilkinson, and J. B. T. M. Roerdink, “Morphological hat-transform scale spaces and their use in pattern classification,” Pattern Recognition, vol. 37, no. 5, pp. 901–915, 2004.
[19]
A. C. Jalba, J. B. T. M. Roerdink, and M. H. F. Wilkinson, “Morphological hat-transform scale spaces and their use in texture classification,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '03), vol. 1, pp. I-329–I-332, Orlando, Fla, USA, September 2003.