全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electromagnetic Imaging of Two-Dimensional Geometries by Multipulse Interference Using the Inverse FDTD Method

DOI: 10.1155/2014/529563

Full-Text   Cite this paper   Add to My Lib

Abstract:

The size, shape, and location of unknown objects in the ground and in the body can be estimated by an electromagnetic imaging technique. An imaging approach to clear detection of two-dimensional geometries is proposed in this paper. Based on the inverse finite-difference time-domain (FDTD) method, a phase interference technique using multidirectional pulses is employed. The advantage of the proposed method is that it can clearly reconstruct the geometry in a simple calculation. Sample imaging results are demonstrated. The analysis of the FDTD results shows that the detectable object size is limited by the incident wavelength and the measurement spacing and illustrates the detectability of multiple objects. 1. Introduction Electromagnetic imaging is an inverse scattering technique to estimate unknown objects. The scattered wave from an object carries information about its geometry, size, and location. The original object shape can be reconstructed by numerically time reversing the scattering process. The inverse scattering technique has been widely studied for various applications [1–5] such as computed tomography, nondestructive evaluation, and geophysical remote sensing. A variety of electromagnetic imaging techniques [6–9] have been proposed based on the finite-difference time-domain (FDTD) method. FDTD works in the time domain with arbitrary structures [10, 11] and thus is suitable to calculate inverse scattering problems. One of the problems of electromagnetic imaging is to reconstruct the detailed geometry of original objects. Previous works successfully detected the position and size of the two- and three-dimensional objects [5–9], but the reconstructed geometries were unclear even for an object immersed in a uniform medium [12–18]. A comparatively successful imaging of the detailed geometry was demonstrated using phase interference with inverse FDTD simulations, in which the scattered field was calculated, and then using time reversal; the original shape was extracted from the interference patterns [19]. However this requires both the scattered electric and magnetic fields in the entire space, and it is difficult to clearly discern the original boundaries due to the continuities of electromagnetic fields unless the original shape is used in the visualization. In this paper, we propose a multipulse interference technique using the inverse FDTD method to improve the detection of geometrical details. In Section 2, we introduce the fundamentals of the proposed approach and demonstrate the imaging for some basic geometries. In Section 3, the

References

[1]  J. C. Bolomey, A. Izadnegahdar, L. Jofre, Ch. Pichot, G. Peronnet, and M. Solaimani, “Microwave diffraction tomography for biomedical applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 30, no. 11, pp. 1998–2000, 1982.
[2]  S. R. H. Hoole, S. Subramaniam, R. Saldanha, J.-L. Coulomb, and J.-C. Sabonnadiere, “Inverse problem methodology and finite elements in the identification of cracks, sources, materials, and their geometry in inaccessible locations,” IEEE Transactions on Magnetics, vol. 27, no. 3, pp. 3433–3443, 1991.
[3]  P. M. Meaney, K. D. Paulsen, and J. T. Chang, “Near-field microwave imaging of biologically-based materials using a monopole transceiver system,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 1, pp. 31–45, 1998.
[4]  K. M. Golden, D. Borup, M. Cheney et al., “Inverse electromagnetic scattering models for sea ice,” IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 5, pp. 1675–1704, 1998.
[5]  A. Qing, C. K. Lee, and L. Jen, “Electromagnetic inverse scattering of two-dimensional perfectly conducting objects by real-coded genetic algorithm,” IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 3, pp. 665–676, 2001.
[6]  Y.-S. Chung, C. Cheon, and S.-Y. Hahn, “Reconstruction of dielectric cylinders using FDTD and topology optimization technique,” IEEE Transactions on Magnetics, vol. 36, no. 4, pp. 956–959, 2000.
[7]  I. T. Rekanos, “Inverse scattering in the time domain: an iterative method using an FDTD sensitivity analysis scheme,” IEEE Transactions on Magnetics, vol. 38, no. 2, pp. 1117–1120, 2002.
[8]  X. Chen, D. Liang, and K. Huang, “Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique,” Journal of Electromagnetic Waves and Applications, vol. 20, no. 13, pp. 1761–1774, 2006.
[9]  M. Donelli, D. Franceschini, P. Rocca, and A. Massa, “Three-dimensional microwave imaging problems solved through an efficient multiscaling particle swarm optimization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 5, pp. 1467–1481, 2009.
[10]  K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas & Propagation, vol. 14, no. 3, pp. 302–307, 1966.
[11]  A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 3rd edition, 2005.
[12]  K. Belkebir, R. E. Kleinman, and C. Pichot, “Microwave imaging—location and shape reconstruction from multifrequency scattering data,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 4, pp. 469–476, 1997.
[13]  C.-C. Chiu and W.-T. Chen, “Electromagnetic imaging for an imperfectly conducting cylinder by the genetic algorithm,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 11, pp. 1901–1905, 2000.
[14]  S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 4, pp. 1697–1708, 2000.
[15]  S. Caorsi and M. Pastorino, “Two-dimensional microwave imaging approach based on a genetic algorithm,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 3, pp. 370–373, 2000.
[16]  S. Caorsi, A. Costa, and M. Pastorino, “Microwave imaging within the second-order born approximation: stochastic optimization by a genetic algorithm,” IEEE Transactions on Antennas and Propagation, vol. 49, no. 1, pp. 22–31, 2001.
[17]  M. Pastorino, A. Massa, and S. Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 3, pp. 573–578, 2000.
[18]  E. Abenius and B. Strand, “Solving inverse electromagnetic problems using FDTD and gradient-based minimization,” International Journal for Numerical Methods in Engineering, vol. 68, no. 6, pp. 650–673, 2006.
[19]  K. Chakrabarti and J. B. Cole, “Simulation study on the detection of size, shape and position of three different scatterers using Non-standard time domain time inverse Maxwell's algorithm,” Optics Express, vol. 18, no. 5, pp. 4148–4157, 2010.
[20]  A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations,” IEEE Transactions on Microwave Theory and Techniques, vol. 23, no. 8, pp. 623–630, 1975.
[21]  J. B. Cole, “The statistical mechanics of image recovery and pattern recognition,” American Journal of Physics, vol. 59, no. 9, pp. 839–842, 1991.
[22]  J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000.
[23]  Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microwave and Optical Technology Letters, vol. 15, no. 3, pp. 158–165, 1997.
[24]  C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 113, no. 13, pp. 1728–1740, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413