全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Detection of Nitroaromatic and Peroxide Explosives in Air Using Infrared Spectroscopy: QCL and FTIR

DOI: 10.1155/2013/532670

Full-Text   Cite this paper   Add to My Lib

Abstract:

A methodology for processing spectroscopic information using a chemometrics-based analysis was designed and implemented in the detection of highly energetic materials (HEMs) in the gas phase at trace levels. The presence of the nitroaromatic HEM 2,4-dinitrotoluene (2,4-DNT) and the cyclic organic peroxide triacetone triperoxide (TATP) in air was detected by chemometrics-enhanced vibrational spectroscopy. Several infrared experimental setups were tested using traditional heated sources (globar), modulated and nonmodulated FT-IR, and quantum cascade laser- (QCL-) based dispersive IR spectroscopy. The data obtained from the gas phase absorption experiments in the midinfrared (MIR) region were used for building the chemometrics models. Partial least-squares discriminant analysis (PLS-DA) was used to generate pattern recognition schemes for trace amounts of explosives in air. The QCL-based methodology exhibited a better capacity of discrimination for the detected presence of HEM in air compared to other methodologies. 1. Introduction The detection of highly energetic materials (HEMs) at trace levels in air remains a subject of great importance to national defense and security. In the past few years, most of the published reports have focused on the detection of these important chemical compounds. However, the majority of them require some type of sampling [1, 2]. Obtaining samples in the field is the principal disadvantage of most explosive detection devices because the person doing the sampling is at risk. Most of the analytical techniques employed for the development of methodologies for HEM detection are based on spectroscopic and chromatographic techniques [1, 2]. Trace amounts of 2,4-dinitrotoluene (2,4-DNT) in air have been detected and discriminated by surface-enhanced Raman spectroscopy (SERS) using a gold surface sensor [3]. These sensors generate a response in the presence or absence of 2,4-DNT and other volatile nitroaromatic HEMs in air. In this case, the sample vapor was introduced to the sensor with a fan. High-speed fluorescence spectroscopy is another method for the detection of nitroaromatic HEM in the air. This method employs silica microspheres coated with a highly sensitive fluorescent polymer that responds by quenching the fluorescence when HEM molecules attach to the polymer [1, 2, 4–7]. 2,4-DNT can also be detected and quantified by measuring the IR acoustic wave in polymer-coated surfaces [8]. In this method, the presence of 2,4-DNT generates a change in the frequency of the acoustic wave on the surface, and this change is used for

References

[1]  D. S. Moore, “Instrumentation for trace detection of high explosives,” Review of Scientific Instruments, vol. 75, no. 8, pp. 2499–2512, 2004.
[2]  D. S. Moore, “Recent advances in trace explosives detection instrumentation,” Sensing and Imaging, vol. 8, no. 1, pp. 9–38, 2007.
[3]  J. M. Sylvia, J. A. Janni, J. D. Klein, and K. M. Spencer, “Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines,” Analytical Chemistry, vol. 72, no. 23, pp. 5834–5840, 2000.
[4]  K. J. Albert and D. R. Walt, “High-speed fluorescence detection of explosives-like vapors,” Analytical Chemistry, vol. 72, no. 9, pp. 1947–1955, 2000.
[5]  E. R. Menzel, L. W. Menzel, and J. R. Schwierking, “A photoluminescence-based field method for detection of traces of explosives,” The Scientific World Journal, vol. 4, pp. 725–735, 2004.
[6]  Y. Salinas, R. Martínez-Má?ez, M. D. Marcos, et al., “Optical chemosensors and reagents to detect explosives,” Chemical Society Reviews, vol. 41, no. 3, pp. 1261–1296, 2012.
[7]  Y. Salinas, A. Agostini, é. Pérez-Esteve, et al., “Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials,” Journal of Materials Chemistry A, vol. 1, no. 11, pp. 3561–3564, 2013.
[8]  G. K. Kannan, A. T. Nimal, U. Mittal, R. D. S. Yadava, and J. C. Kapoor, “Adsorption studies of carbowax coated surface acoustic wave (SAW) sensor for 2,4-dinitro toluene (DNT) vapour detection,” Sensors and Actuators B, vol. 101, no. 3, pp. 328–334, 2004.
[9]  R. Batlle, H. Carlsson, P. Tollb?ck, A. Colmsj?, and C. Crescenzi, “Enhanced detection of nitroaromatic explosive vapors combining solid-phase extraction-air sampling, supercritical fluid extraction, and large-volume injection-GC,” Analytical Chemistry, vol. 75, no. 13, pp. 3137–3144, 2003.
[10]  C. Sánchez, H. Carlsson, A. Colmsj?, C. Crescenzi, and R. Batlle, “Determination of nitroaromatic compounds in air samples at femtogram level using C18 membrane sampling and on-line extraction with LC-MS,” Analytical Chemistry, vol. 75, no. 17, pp. 4639–4645, 2003.
[11]  R. Schulte-Ladbeck and U. Karst, “Determination of triacetonetriperoxide in ambient air,” Analytica Chimica Acta, vol. 482, no. 2, pp. 183–188, 2003.
[12]  J. I. Steinfeld and J. Wormhoudt, “Explosives detection: a challenge for physical chemistry,” Annual Review of Physical Chemistry, vol. 49, no. 1, pp. 203–232, 1998.
[13]  J. J. Perez, P. M. Flanigan, J. J. Brady, and R. J. Levis, “Classification of smokeless powders using laser electrospray mass spectrometry and offline multivariate statistical analysis,” Analytical Chemistry, vol. 85, no. 1, pp. 296–302, 2013.
[14]  F. C. de Lucia Jr. and J. L. Gottfried, “Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification,” Spectrochimica Acta B, vol. 66, no. 2, pp. 122–128, 2011.
[15]  J. K. V. Mardia, J. T. Kent, and J. M. Biby, Chemometrics: Statistic and Computer Application in Analytical Chemistry, Academic Press, London, UK, 1980.
[16]  K. R. Beebe, R. J. Pell, and M. B. Seasholtz, Chemometrics. A Pactricla Guide, John Wiley & Sons, New York, NY, USA, 1998.
[17]  C. J. Huberty, Applied Discriminant Analysis, Wiley-Interscience, Hoboken, NJ, USA, 1994.
[18]  Y. M. Kim, J. F. MacGregor, and L. K. Kostanski, “Principal component analysis of FT-IR spectra for cationic photopolymerization of mixtures of two monomers,” Chemometrics and Intelligent Laboratory Systems, vol. 75, no. 1, pp. 77–90, 2005.
[19]  U. G. Indahl, N. S. Sahni, B. Kirkhus, and T. N?s, “Multivariate strategies for classification based on NIR-spectra-with application to mayonnaise,” Chemometrics and Intelligent Laboratory Systems, vol. 49, no. 1, pp. 19–31, 1999.
[20]  Y. Tan, L. Shi, W. Tong, G. T. G. Hwang, and C. Wang, “Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models,” Computational Biology and Chemistry, vol. 28, no. 3, pp. 235–244, 2004.
[21]  B. Lindholm-Sethson, S. Han, S. Ollmar et al., “Multivariate analysis of skin impedance data in long-term type 1 diabetic patients,” Chemometrics and Intelligent Laboratory Systems, vol. 44, no. 1-2, pp. 381–394, 1998.
[22]  Q. P. He, S. J. Qin, and J. Wang, “A new fault diagnosis method using fault directions in Fisher discriminant analysis,” AIChE Journal, vol. 51, no. 2, pp. 555–571, 2005.
[23]  L. C. Pacheco-Londo?o, W. Ortiz-Rivera, O. M. Primera-Pedrozo, and S. P. Hernández-Rivera, “Vibrational spectroscopy standoff detection of explosives,” Analytical and Bioanalytical Chemistry, vol. 395, no. 2, pp. 323–335, 2009.
[24]  G. A. Buttigieg, A. K. Knight, S. Denson, C. Pommier, and M. B. Denton, “Characterization of the explosive triacetone triperoxide and detection by ion mobility spectrometry,” Forensic Science International, vol. 135, no. 1, pp. 53–59, 2003.
[25]  B. Brauer, F. Dubnikova, Y. Zeiri, R. Kosloff, and R. B. Gerber, “Vibrational spectroscopy of triacetone triperoxide (TATP): anharmonic fundamentals, overtones and combination bands,” Spectrochimica Acta A, vol. 71, no. 4, pp. 1438–1445, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413