全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Burn-In Aging Behavior and Analytical Modeling of Wavelength-Division Multiplexing Semiconductor Lasers: Is the Swift Burn-In Feasible for Long-Term Reliability Assurance?

DOI: 10.1155/2013/568945

Full-Text   Cite this paper   Add to My Lib

Abstract:

Effective and economical burn-in screening is important for technology development and manufacture of semiconductor lasers. We study the burn-in degradation behavior of wavelength-division multiplexing semiconductor lasers to determine the feasibility of short burn-in. The burn-in is characterized by the sublinear model and correlated with long-term reliability. 1. Introduction As the demand of data, voice, and video play grows, the bandwidth requirement for downstream and upstream transmissions continues to increase. Recently, there has been accelerated growth in bandwidth demand due to the introduction of mobile smart phones and portable touch screen tablets (iPhone, iPad, etc.). Wavelength-division multiplexing has been the enabling technology for higher bandwidth. To meet the WDM applications where a high density of channels is in service, each channel requires superior reliability and wavelength stability. Some network and cable operators have tightened up their wavelength stability from 0.1?nm to 0.03–0.09?nm [1–4]. On the other hand, there has been an ongoing driver to reduce the manufacturing cost and cycle time of the laser components. One way to achieve the lower cost is by means of qualification improvement. In this paper, we study the burn-in behavior of the WDM distributed feedback (DFB) lasers and correlate it with long-term reliability. We characterize the burn-in behavior using sublinear model and determine the burn-in times. We also correlate the burn-in with the long-term life test. We demonstrate that swift burn-in screen of BH lasers is feasible while meeting the long-term WDM reliability requirement. 2. Experimental The buried heterostructure (BH) DFB lasers with C-band (1550?nm and vicinity) lasing wavelength were used for the study. Epitaxial layers were grown on n-type InP substrate using metal organic chemical vapor deposition (MOCVD) technique. First, n-doped InP buffer layer was grown. An active layer consisting of multiquantum well structures and grating layers were grown sequentially. The composition of the active region was InGaAsP. A mesa structure was formed by wet etch. Subsequently, p-InP and n-InP burying layers were grown to form current blocking. The final regrowth layer was grown, etched into mesa structure, and covered with SiNx/SiO2 dielectric layers. The contact opening in the dielectric was created by reactive ion etching (RIE), and the p-metallization stack of Ti/Pt/Au/Cr/Au was deposited to make ohmic contact. On the n-side, the wafer was thinned by lapping and deposited with AuGe/Ni/Au to form n-contact.

References

[1]  B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley, 2nd edition, 2007, Chapter 22.
[2]  J.-S. Huang, “Design-in reliability of modern distributed feedback (DFB) InP lasers: can we meet up the stringent wavelength-division multiplex (WDM) requirement?” in Proceedings of the IEEE Photonics Society Summer Topical Meeting Series, pp. 89–90, Montreal, Canada, July 2011.
[3]  H. Takaaki, H. Mamoru, and N. Hideki, “Wavelength-stable laser diode and photodiode array for laser interferometer positioning systems,” Technical Report no. 32, Yokogawa, 2001.
[4]  D. A. Cohen and L. A. Coldren, “Temperature compensation of the threshold current, differential efficiency, and refractive index of a GaInAs/InP MOW diode laser mounted on a bimetallic heatsink,” Electronics Letters, vol. 32, no. 24, pp. 2245–2247, 1996.
[5]  J.-S. Huang, T. Nguyen, W. Hsin, I. Aeby, R. Ceballo, and J. Krogen, “Reliability of etched-mesa buried-heterostructure semiconductor lasers,” IEEE Transactions on Device and Materials Reliability, vol. 5, no. 4, pp. 665–674, 2005.
[6]  Telcordia Technologies, “Generic reliability assurance requirements for optoelectronic devices used in telecommunications equipment,” GR-468-CORE, Bellcore, 1998.
[7]  S. P. Sim, “A review of the reliability of III–V opoelectronic components,” in Semiconductor Device Reliability, A. Christou and B. A. Ungar, Eds., vol. 175 of NATO ASI Series, pp. 301–3319, Kluwer Academic, Dodrecht, The Netherlands, 1990.
[8]  J.-S. Huang, “Temperature and current dependences of reliability degradation of buried heterostructure semiconductor lasers,” IEEE Transactions on Device and Materials Reliability, vol. 5, no. 1, pp. 150–154, 2005.
[9]  Y. Deshayes, L. Bechou, F. Verdier, and Y. Danto, “Long-term reliability prediction of 935 nm LEDs using failure laws and low acceleration factor ageing tests,” Quality and Reliability Engineering International, vol. 21, no. 6, pp. 571–594, 2005.
[10]  M. S. Ab-Rahman and M. R. Hassan, “Theoretical analysis of the effect of temperature dependence of Auger coefficient on the turn-on time delay of uncooled semiconductor laser diodes,” Optics Communications, vol. 283, no. 11, pp. 2378–2384, 2010.
[11]  S. K. K. Lam, R. E. Mallard, and D. T. Cassidy, “Analytical model for saturable aging in semiconductor lasers,” Journal of Applied Physics, vol. 94, no. 3, pp. 1803–1809, 2003.
[12]  J. S. Huang, “Design-in reliability for modern wavelength-division multiplex (WDM) distributed feedback (DFB) InP lasers,” Applied Physics Research, vol. 4, no. 2, pp. 15–28, 2012.
[13]  T. Westphalen, M. Leers, M. Werner, M. Traub, H. d. Hoffmann, and R. Ostendorf, “Packaging influence on laser bars of different dimensions,” in The 7th High-Power Diode Laser Technology and Applications, vol. 7198 of Proceedings of SPIE, San Jose, Calif, USA, 2009.
[14]  S. Landi, C. Papuzza, A. Piccirillo, D. Re, and L. Serra, “Characterisation of III–V optoelectronic devices by internal second-harmonic generation technique,” Applied Surface Science, vol. 143, no. 1, pp. 115–123, 1999.
[15]  J.-P. Landesman, “Micro-photoluminescence for the visualisation of defects, stress and temperature profiles in high-power III–V's devices,” Materials Science and Engineering B, vol. 91-92, pp. 55–61, 2002.
[16]  T. M. Alander, P. A. Heino, and E. O. Ristolainen, “Analysis of substrates for single emitter laser diodes,” Journal of Electronic Packaging, vol. 125, no. 3, pp. 313–318, 2003.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413