全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design and Investigation of SST/nc-Si:H/M (M = Ag, Au, Ni) and M/nc-Si:H/M Multifunctional Devices

DOI: 10.1155/2013/807542

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hydrogenated nanocrystalline Silicon thin films prepared by the very high frequency chemical vapor deposition technique (VHF-CVD) on stainless steel (SST) substrates are used to design Schottky point contact barriers for the purpose of solar energy conversion and passive electronic component applications. In this process, the contact performance between SST and M (M = Ag, Au, and Ni) and between Ag, Au, and Ni electrodes was characterized by means of current-voltage, capacitance-voltage, and light intensity dependence of short circuit ( ) current and open circuit voltage ( ) of the contacts. Particularly, the devices ideality factors, barrier heights were evaluated by the Schottky method and compared to the Cheung's. Best Schottky device performance with lowest ideality factor suitable for electronic applications was observed in the SST/nc-Si:H/Ag structure. This device reflects a of 229?mV with an of 1.6?mA/cm2 under an illumination intensity of ~40?klux. On the other hand, the highest being 9.0?mA/cm2 and the of 53.1?mV were observed for Ni/nc-Si:H/Au structure. As these voltages represent the maximum biasing voltage for some of the designed devices, the SST/nc-Si:H/M and M/nc-Si:H/M can be regarded as multifunctional self-energy that provided electronic devices suitable for active or passive applications. 1. Introduction Nanoscale crystalline silicon particles embedded in amorphous silica, where the nanoscale particles play a main role, have attracted the interest of researchers due to their applicability in electronics as thin film transistors [1]. Hydrogenated nanocrystalline silicon (nc-Si:H) is reported to exhibit a promising application as a stable high-efficiency solar cells and as a panel displays [2–5]. The hydrogenated nanocrystalline silicon layers are known to be highly influenced by the type of substrate they grow on. They have been grown on GaAs wafer substrates [6]. Analysis on these films reflected nonuniform electric field distribution. A series of nc-Si:H films have also been deposited on glass substrates at different silicate concentrations and different substrate temperatures by using the traditional radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with an excitation frequency of 13.56?MHz [7]. These films which grow on glass substrate at low temperature were characterized by average grain size, crystalline nature, and dark electrical conductivity data obtained from the Raman and electrical conductivity spectroscopy, respectively. These parameters are reported to be highly influenced by the substrate

References

[1]  I. C. Cheng, S. Allen, and S. Wagner, “Evolution of nanocrystalline silicon thin film transistor channel layers,” Journal of Non-Crystalline Solids, vol. 338–340, no. 1, pp. 720–724, 2004.
[2]  R. E. I. Schropp, H. Li, R. H. Franken et al., “Nanostructured thin films for multiband-gap silicon triple junction solar cells,” Thin Solid Films, vol. 516, no. 20, pp. 6818–6823, 2008.
[3]  H. Wagner, “Physical aspects and technological realization of amorphous silicon thin film solar cells,” Physica Status Solidi B, vol. 192, pp. 229–239, 1995.
[4]  J. J. Lu, J. Chen, Y. L. He, and W. Z. Shen, “Band offsets and transport mechanisms of hydrogenated nanocrystalline silicon/crystalline silicon heterojunction diode: key properties for device applications,” Journal of Applied Physics, vol. 102, no. 6, Article ID 063701, 2007.
[5]  X. Y. Chen, W. Z. Shen, H. Chen, R. Zhang, and Y. L. He, “High electron mobility in well ordered and lattice-strained hydrogenated nanocrystalline silicon,” Nanotechnology, vol. 17, no. 2, pp. 595–599, 2006.
[6]  C. S. Jiang, A. Ptak, B. Yan, H. R. Moutinho, J. V. Li, and M. M. Al-Jassim, “Microelectrical characterizations of junctions in solar cell devices by scanning Kelvin probe force microscopy,” Ultramicroscopy, vol. 109, no. 8, pp. 952–957, 2009.
[7]  X. Y. Gao, J. T. Zhao, Y. U. F. Liu et al., “Characterized microstructure and electrical properties of hydrogenated nanocrystalline silicon films by raman and electrical conductivity spectra,” Acta Physica Polonica A, vol. 115, no. 3, pp. 738–741, 2009.
[8]  G. Jia, M. Steglich, I. Sill, and F. Falk, “Coreshell heterojunction solar cells on silicon nanowire arrays,” Solar Energy Materials and Solar Cells, vol. 96, no. 1, pp. 226–230, 2012.
[9]  K. W. Chan, B. T. Goh, S. Abdul Rahman, and Z. Aspanut, “Au/nc-Si:H core-shell nanostructures prepared by hot wire assisted plasma enhanced chemical vapor deposition technique,” Surface Coating Technology, 2012.
[10]  S. Guha and J. Yang, High-Efficiency Amorphous Silicon and Nanocrystalline Silicon-Based Solar Cells and Modules, United Solar Ovonic LLC, 2008.
[11]  M. Meaudre, R. Meaudre, S. Vignoli, and O. Marty, “Density of states in hydrogenated microcrystalline silicon determined by space charge limited currents,” Journal of Non-Crystalline Solids, vol. 299–302, no. 1, pp. 626–631, 2002.
[12]  M. S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley & Sons, New York, NY, USA, 1988.
[13]  Z. C. Feng, SiC Power Materials: Devices and Applications, Springer, Berlin, Germany, 2004.
[14]  A. F. Qasrawi, F. G. Aljammal, N. M. Taleb, and N. M. Gasanly, “Design and characterization of TlInSe2 varactor devices,” Physica B, vol. 406, no. 14, pp. 2740–2744, 2011.
[15]  A. F. Qasrawi and N. M. Gasanly, “Investigation of the electrical parameters of Ag/p-TlGaSeS/C Schottky contacts,” Materials Science and Engineering B, vol. 177, pp. 981–985, 2012.
[16]  S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Applied Physics Letters, vol. 49, no. 2, pp. 85–87, 1986.
[17]  G. ?ankaya and B. Abay, “Current- and capacitance-voltage characteristics of Cd/p-GaTe Schottky barrier diodes under hydrostatic pressure,” Semiconductor Science and Technology, vol. 21, no. 2, pp. 124–130, 2006.
[18]  S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, NY, USA, 1981.
[19]  A. F. Qasrawi, S. M. S. Elayyat, and N. M. Gasanly, “Dynamical and passive characteristics of the Ag/TlGaSeS/Ag RFresonators,” Crystal Research and Technology, vol. 47, pp. 615–619, 2012.
[20]  T. Gershon, K. P. Musselman, A. Marin, R. H. Friend, and J. L. MacManus-Driscoll, “Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer,” Solar Energy Materials and Solar Cells, vol. 96, no. 1, pp. 148–154, 2012.
[21]  A. Rose, Concepts in Photoconductivity and Allied Problems, Interscience Publishers, New York, NY, USA, 1963.
[22]  M. Misra and T. D. Moustakas, “Photoconductivity recombination kinetics in GaN films,” in Proceedings of the Materials Research Society Symposium, vol. 622, pp. T541–T546, April 2000.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413