全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Germanium Doping to Improve Carrier Mobility in CdO Films

DOI: 10.1155/2013/804646

Full-Text   Cite this paper   Add to My Lib

Abstract:

This investigation addresses the structural, optical, and electrical properties of germanium incorporated cadmium oxide (CdO?:?Ge) thin films. The focus was on the improvement in carrier mobility to achieve high transparency for near-infrared light and low resistivity at the same time. The properties were studied using X-ray diffraction, SEM, spectral photometry, and Hall measurements. All CdO?:?Ge films were polycrystalline with high texture orientation along [111] direction. It was observed that it is possible to control the carrier concentration ( ) and mobility ( ) with Ge-incorporation level. The mobility could be improved to a highest value of ?cm2/V·s with Ge doping of 0.25?wt% while maintaining the electrical resistivity as low as ?Ω·cm and good transparency % in the NIR spectral region. The results of the present work proved to select Ge as dopant to achieve high carrier mobility with low resistivity for application in transparent conducting oxide (TCO) field. Generally, the properties found make CdO?:?Ge films particularly interesting for the application in optoelectronic devices like thin-film solar cells. 1. Introduction Transparent conduction oxides (TCOs) like ZnO, CdO, SnO2, In2O3, and NiO are degenerate semiconducting group. They exhibit typical n-type conduction, which is caused by a deviation from stoichiometry due to the low formation energies for intrinsic donor defects, such as natural structural metal interstitials (Mi) and oxygen vacancies (VO). It was found that it is possible to control TCO optoelectronic properties by managing and controlling their structural defects. Therefore, the TCOs have widespread use in many advanced technologies, like flat panel displays and solar energy systems [1]. Therefore, it is necessary to examine ways for improving their optoelectronic functions. These enhancements could be realized by a suitable doping, which increases the carrier mobility ( ) and consequently the conductivity but without reduction in the transparency. The present work deals with CdO. It is one of TCOs with an n-type electrical resistivity of 10?2–10?4?Ω·cm and good transparency in the visible and NIR spectral regions with a direct bandgap of 2.2–2.7?eV [2–4]. The carrier mobility in CdO films is considerably dependent on growth method and conditions, like the type of the substrate and its temperature. For example, the room-temperature carrier mobility in CdO film grown by MOCVD method on glass substrate at 412°C was 105?cm2/V·s [5]. This high mobility was attributed to a reduction in neutral impurity scattering (NIS) due to

References

[1]  S. Calnan and A. N. Tiwari, “High mobility transparent conducting oxides for thin film solar cells,” Thin Solid Films, vol. 518, no. 7, pp. 1839–1849, 2010.
[2]  Z. Zhao, D. L. Morel, and C. S. Ferekides, “Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition,” Thin Solid Films, vol. 413, no. 1-2, pp. 203–211, 2002.
[3]  D. M. Carballeda-Galicia, R. Castanedo-Pérez, O. Jiménez-Sandoval, S. Jiménez-Sandoval, G. Torres-Delgado, and C. I. Zú?iga-Romero, “High transmittance CdO thin films obtained by the sol-gel method,” Thin Solid Films, vol. 371, no. 1, pp. 105–108, 2000.
[4]  M. Burbano, D. O. Scanlon, and G. W. Watson, “Sources of conductivity and doping limits in CdO from hybrid density functional theory,” Journal of the American Chemical Society, vol. 133, no. 38, pp. 15065–15072, 2011.
[5]  A. W. Metz, J. R. Ireland, J. G. Zheng et al., “Transparent conducting oxides: texture and microstructure effects on charge carrier mobility in MOCVD-derived CdO thin films grown with a thermally stable, low-melting precursor,” Journal of the American Chemical Society, vol. 126, no. 27, pp. 8477–8492, 2004.
[6]  A. A. Dakhel, “Effect of thallium doping on the electrical and optical properties of CdO thin films,” Physica Status Solidi (A), vol. 205, no. 11, pp. 2704–2710, 2008.
[7]  Y. Dou, R. G. Egdell, T. Walker, D. S. L. Law, and G. Beamson, “N-type doping in CdO ceramics: a study by EELS and photoemission spectroscopy,” Surface Science, vol. 398, no. 1-2, pp. 241–258, 1998.
[8]  A. Wang, J. R. Babcock, N. L. Edleman et al., “Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: clues for optimizing transparent conductors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7113–7116, 2001.
[9]  R. Asahi, A. Wang, J. R. Babcock et al., “First-principles calculations for understanding high conductivity and optical transparency in InxCd1-xO films,” Thin Solid Films, vol. 411, no. 1, pp. 101–105, 2002.
[10]  A. A. Dakhel, “Transparent conducting properties of samarium-doped CdO,” Journal of Alloys and Compounds, vol. 475, no. 1-2, pp. 51–54, 2009.
[11]  A. A. Dakhel, “Investigation on high carrier mobility in chromium incorporated CdO thin films on glass,” International Journal of Thin Films Science and Technology, vol. 1, pp. 25–33, 2012.
[12]  A. A. Dakhel, “Electrical and optical investigations on Tungsten-incorporated CdO thin films,” Journal of Electronic Materials, vol. 41, no. 9, pp. 2405–2410, 2012.
[13]  A. A. Dakhel, “Structural, optical and electrical measurements on boron-doped CdO thin films,” Journal of Materials Science, vol. 46, no. 21, pp. 6925–6931, 2011.
[14]  R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallographica A, vol. 32, part 5, pp. 751–767, 1976.
[15]  M. Jiang, Z. Wang, and Z. Ning, “Study of structural and optical properties of Ge doped ZnO films,” Thin Solid Films, vol. 517, no. 24, pp. 6717–6720, 2009.
[16]  Y. B. Lv, Y. Dai, K. Yang et al., “Density functional investigation of structural, electronic and optical properties of Ge-doped ZnO,” Physica B, vol. 406, no. 20, pp. 3926–3930, 2011.
[17]  Powder Diffraction File, Joint Committee for Powder Diffraction Studies (JCPDS) file No. 05-0640.
[18]  E. F. Kaelble, Ed., Handbook of X-Rays for Diffraction, Emission, Absorption, and Microscopy, McGraw-Hill, New York, NY, USA, 1967.
[19]  R. S. Ajimsha, A. K. Das, B. N. Singh, P. Misra, and L. M. Kukreja, “Correlation between electrical and optical properties of Cr:ZnO thin films grown by pulsed laser deposition,” Physica B, vol. 406, no. 24, pp. 4578–4583, 2011.
[20]  N. Wongcharoen, T. Gaewdang, and T. Wongcharoen, “Electrical properties of Al-doped CdO thin films prepared by thermal evaporation in vacuum,” Energy Procedia, vol. 15, pp. 361–370, 2012.
[21]  M. Chen, Z. L. Pei, X. Wang et al., “Intrinsic limit of electrical properties of transparent conductive oxide films,” Journal of Physics D, vol. 33, no. 20, article 2538, 2000.
[22]  D. H. Zhang and H. L. Ma, “Scattering mechanisms of charge carriers in transparent conducting oxide films,” Applied Physics A, vol. 62, no. 5, pp. 487–492, 1996.
[23]  W. Q. Hong, “Extraction of extinction coefficient of weak absorbing thin films from special absorption,” Journal of Physics D, vol. 22, no. 9, article 1384, 1989.
[24]  J. Tauc and F. Abelesn, Eds., Optical Properties of Solids, North Holland, Amsterdam, The Netherlands, 1969.
[25]  V. V. Afanasev, A. Stesmans, A. Delabie, F. Bellenger, M. Housse, and M. Meuris, “Electronic structure of GeO2-passivated interfaces of (100)Ge with Al2O3 and HfO2,” Applied Physics Letters, vol. 92, no. 2, Article ID 022109, 3 pages, 2008.
[26]  J. I. Pankove, Optical Processes in Semiconductors, Dover, New York, NY, USA, 1975.
[27]  Y. Z. Zhang, J. G. Lu, Z. Z. Ye et al., “Effects of growth temperature on Li–N dual-doped p-type ZnO thin films prepared by pulsed laser deposition,” Applied Surface Science, vol. 254, no. 7, pp. 1993–1996, 2008.
[28]  A. A. Dakhel, “Optoelectronic properties of Eu- and H-codoped CdO films,” Current Applied Physics, vol. 11, no. 1, pp. 11–15, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413