全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Important Effect of Defect Parameters on the Characteristics of Thue-Morse Photonic Crystal Filters

DOI: 10.1155/2013/856148

Full-Text   Cite this paper   Add to My Lib

Abstract:

Design and characterization of optical filters based on photonic crystal Thue-Morse structures are theoretically examined using transfer matrix method. It is shown that by introducing defect layer in the original structure of the proposed filter, main characteristics of it are changed. The main advantage of this defect in Thue-Morse structure is its capability for DWDM communication applications. In other words, achievement of DWDM filter through the Thue-Morse photonic crystal structure is much easier. The desired wavelengths can be achieved by changing the defect parameter. High efficiency of the proposed filter is one of its benefits. The transmission efficiency of this structure is about 96% and the quality factor is more than 77000. 1. Introduction The advent of Wavelength Division Multiplexing (WDM) and Dense Wavelength Division Multiplexing (DWDM) technologies is an important step toward realizing all optical communication network [1, 2]. By use of these technologies one can optimize the capacity of optical fiber by launching multiple (4, 8, or more) optical channels at different wavelengths into one single fiber. Optical filters are crucial devises for WDM and DWDM systems [3, 4]. Besides omitting the noise from channel information, optical filters are used for separating the undesired WDM and DWDM channels from desired channels. Other crucial applications of filters are in demultiplexing multiple channels in WDM and DWDM systems [5–7]. Since the discovery of photonic crystal in 1987 [8, 9], designing compact and highly selective optical filters has become possible. Thanks to these artificial periodic structures we can control the flow of light in ultrasmall scales [10]. Due to the simplicity of design and fabrication, 1D PhC based filters are the mass popular devices realized based on PhC. The key feature of PhCs is a wavelength region in which no optical wave is allowed to propagate inside the crystal; this feature is called Photonic Band Gap (PBG) [11]. We can use the PBG property of 1D PhC to design optical reflector [12] and band reject filters [13]. Adding a defect layer to a 1D PhC creates a narrow band transmission filter [14]. Also if we replace the defect layer by a photonic quantum well [15] we will have a multichannel filter. By replacing dielectric layers by super conducting PhC we can realize a multichannel filter without using defect layer or quantum well [16]. In 1984 Shechtman [17] proposed a new class of crystals called quasi-periodic and aperiodic crystals. Fibonacci, Thue-Morse, and Rodin-Shapiro structures are some example

References

[1]  S. G. Mun, J. H. Moon, H. K. Lee, J. Y. Kim, and C. H. Lee, “A WDM-PON with a 40?Gb/s (32 × 1.25?Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Optics Express, vol. 16, no. 15, pp. 11361–11368, 2008.
[2]  I. Gasulla and J. Capmany, “Tb/s·km Multimode fiber link combining WDM transmission and low-linewidth lasers,” Optics Express, vol. 16, pp. 8033–8038, 2008.
[3]  Z. Xu, J. Wang, Q. He, L. Cao, P. Su, and G. Jin, “Optical filter based on contra-directional waveguide coupling in a 2D photonic crystal with square lattice of dielectric rods,” Optics Express, vol. 13, no. 15, pp. 5608–5613, 2005.
[4]  H. Ghafoori-Fard, M. J. Moghimi, and A. Rostami, “Linear and nonlinear superimposed bragg grating: a novel proposal for all-optical multi-wavelength filtering and switching,” Progress in Electromagnetics Research, vol. 77, pp. 243–266, 2007.
[5]  X. Sun, P. Gu, M. Li, X. Liu, D. Wang, and J. Zhang, “Tunable spatial demultiplexer based on the Fabry-Perot filter,” Optics Express, vol. 14, pp. 8470–8475, 2006.
[6]  H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electronics Letters, vol. 26, no. 2, pp. 87–88, 1990.
[7]  M. Gerken and D. A. B. Miller, “Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures,” IEEE Photonics Technology Letters, vol. 15, no. 8, pp. 1097–1099, 2003.
[8]  E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, pp. 2059–2062, 1987.
[9]  S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, pp. 2486–2489, 1987.
[10]  S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Optics Express, vol. 11, no. 22, pp. 2927–2939, 2003.
[11]  K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin, Germany, 2001.
[12]  F. Mehdizadeh, H. Alipour-Banaei, and Z. Daie-Kuzekanani, “All optical multi reflection structure based on one dimensional photonic crystals for WDM communication systems,” Optoelectronics and Advanced Materials-Rapid Communications, vol. 6, pp. 527–531, 2012.
[13]  H. Alipour-Banaei and F. Mehdizadeh, “A proposal for anti-uvb filter based on one-dimensional photonic crystal structure,” Digest Journal of Nanomaterials and Biostructures, vol. 7, pp. 361–367, 2012.
[14]  C. J. Wu and Z. H. Wang, “Properties of defect modes in one-dimensional photonic crystals,” Progress in Electromagnetics Research, vol. 103, pp. 169–184, 2010.
[15]  F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Applied Physics Letters, vol. 77, pp. 3698–3701, 2000.
[16]  W. H. Lin, C. J. Wu, T. J. Yang, and S. J. Chang, “Terahertz multichanneled filter in a superconducting photonic crystal,” Optics Express, vol. 18, no. 26, pp. 27155–27166, 2010.
[17]  D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Physical Review Letters, vol. 53, no. 20, pp. 1951–1953, 1984.
[18]  W. J. Hsueh, S. J. Wun, Z. J. Lin, and Y. H. Cheng, “Features of the perfect transmission in Thue-Morse dielectric multilayers,” Journal of the Optical Society of America B, vol. 28, pp. 2584–2591, 2011.
[19]  N. Liu, “Propagation of light waves in Thue-Morse dielectric multilayers,” Physical Review B, vol. 55, pp. 3543–3547, 1997.
[20]  V. Agarwal, J. A. Soto-Urueta, D. Becerra, and M. E. Mora-Ramos, “Light propagation in polytype Thue-Morse structures made of porous silicon,” Photonics and Nanostructures, vol. 3, no. 2-3, pp. 155–161, 2005.
[21]  V. V. Grigoriev and F. Biancalana, “Bistability and stationary gap solitons in quasiperiodic photonic crystals based on Thue-Morse sequence,” Photonics and Nanostructures, vol. 8, no. 4, pp. 285–290, 2010.
[22]  G. Zhang, X. Yang, Y. Li, and H. Song, “Optical transmission through multi-component generalized ThueMorse superlattices,” Physica B, vol. 405, no. 17, pp. 3605–3610, 2010.
[23]  X. H. Deng, J. R. Yuan, W. Q. Hong, and H. Ouyang, “Tunable filters based on Thue-Morse quasicrystals composed of single-negative materials,” Physics Procedia, vol. 22, pp. 360–365, 2011.
[24]  O. Y. Hong and X. H. Deng, “Direction-independent band gaps extension based on Thue-Morse photonic heterostructures containing negative-index materials,” Materials Science Forum, vol. 675, pp. 1077–1080, 2011.
[25]  S. Zirak-Gharamaleki, “Narrowband optical filter design for DWDM communication applications based on Generalized Aperiodic Thue-Morse structures,” Optics Communications, vol. 284, no. 2, pp. 579–584, 2011.
[26]  M. S. Vasconcelos and E. L. Albuquerque, “Transmission fingerprints in quasiperiodic dielectric multilayers,” Physical Review B, vol. 59, no. 17, pp. 11128–11131, 1999.
[27]  L. Dal Negro, M. Stolfi, Y. Yi, et al., “Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals,” Applied Physics Letters, vol. 84, pp. 5186–5188, 2004.
[28]  X. Jiang, Y. Zhang, S. Feng, K. C. Huang, Y. Yi, and J. D. Joannopoulos, “Photonic band gaps and localization in the Thue-Morse structures,” Applied Physics Letters, vol. 86, Article ID 201110, 3 pages, 2005.
[29]  L. Dal Negro, J. H. Yi, V. Nguyen, Y. Yi, J. Michel, and L. C. Kimerling, “Spectrally enhanced light emission from aperiodic photonic structures,” Applied Physics Letters, vol. 86, Article ID 261905, 3 pages, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413