全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum-Dot Semiconductor Optical Amplifiers: State Space Model versus Rate Equation Model

DOI: 10.1155/2013/831852

Full-Text   Cite this paper   Add to My Lib

Abstract:

A simple and accurate dynamic model for QD-SOAs is proposed. The proposed model is based on the state space theory, where by eliminating the distance dependence of the rate equation model of the QD-SOA; we derive a state space model for the device. A comparison is made between the rate equation model and the state space model under both steady state and transient regimes. Simulation results demonstrate that the derived state space model not only is much simpler and faster than the rate equation model, but also it is as accurate as the rate equation model. 1. Introduction During the last decade, the potential capabilities of QD-SOAs for use in all-optical signal processing and optical communication systems have been intensively studied. Among these capabilities, ultrafast gain recovery [1–5], high saturated output power [6, 7], pattern-effect free signal amplification at high speeds up to 80?Gb/s [8–10], pattern-effect free XGM-based wavelength conversion at 160?Gb/s [11], capability of operation at Tb/s speeds in presence of a control signal [12], amplification of high bit rate multichannel signals [13, 14], low noise figure [15], small dimensions, and integration with other optoelectronic devices such as laser diodes and optical modulators have great importance in any optoelectronic system. In recent years, several models have been proposed for describing the electrical and optical characteristics of QD-SOAs. Among these theoretical models, the most accurate models are based on semiconductor Maxwell-Bloch equations [16–20]. However, the numerical calculations associated with this model are extremely time-consuming and require huge amount of memory. A simplified approach to model QD-SOAs which is known as rate equation model (REM), has demonstrated an excellent agreement with experimental results [4, 21]. The REM includes a set of coupled differential equations to give details of carrier dynamics and optical properties of QD-SOA. To include the carrier dynamics in the REM, in some papers the electron-hole pairs are considered as exciton and only the carrier dynamics in the conduction band (CB) is taken into account [22–25]. In some other papers, the holes dynamics is included by using quasi-Fermi level in the valence band (VB) [26]. Also, the dynamics of electron and hole are considered separately in some articles [4, 27–31]. This model is known as “electron-hole model” [30], where the rate equations for electrons and holes are written separately. In this paper, we have employed the last approach to give details of the investigated QD-SOA [29, 31].

References

[1]  S. Schneider, U. Woggon, P. Boni et al., “Ultrafast gain recovery dynamics of the excited state in InGaAs quantum dot amplifiers,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO '05), vol. 3, pp. 1674–1676, May 2005, OSA Technical Digest (CD) paper CThH6.
[2]  Z. Bakonyi, H. Su, G. Onishchukov et al., “High-gain quantum-dot semiconductor optical amplifier for 1300 nm,” IEEE Journal of Quantum Electronics, vol. 39, no. 11, pp. 1409–1414, 2003.
[3]  S. Schneider, P. Borri, W. Langbein et al., “Excited-state gain dynamics in InGaAs quantum-dot amplifiers,” IEEE Photonics Technology Letters, vol. 17, no. 10, pp. 2014–2016, 2005.
[4]  J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 45, pp. 240–248, 2009.
[5]  Y. Yi, H. Lirong, X. Meng, T. Peng, and H. Dexiu, “Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier,” Journal of the Optical Society of America B, vol. 27, no. 11, pp. 2211–2217, 2010.
[6]  T. W. Berg, S. Bischoff, I. Magnusdottir, and J. M?rk, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photonics Technology Letters, vol. 13, no. 6, pp. 541–543, 2001.
[7]  C. Meuer, J. Kim, M. Laemmlin et al., “Static gain saturation in quantum dot semiconductor optical amplifiers,” Optics Express, vol. 16, no. 11, pp. 8269–8279, 2008.
[8]  T. Vallaitis, C. Koos, R. Bonk et al., “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Optics Express, vol. 16, no. 1, pp. 170–178, 2008.
[9]  M. Sugawara, N. Hatori, M. Ishida et al., “Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s-1 directly modulated lasers and 40 Gb s-1 signal-regenerative amplifiers,” Journal of Physics D, vol. 38, no. 13, pp. 2126–2134, 2005.
[10]  C. Schmidt-Langhorst, C. Meuer, R. Ludwig et al., “Quantum-dot semiconductor optical booster amplifier with ultrafast gain recovery for pattern-effect free amplification of 80 Gb/s RZ-OOK data signals,” in Proceedings of the 35th European Conference on Optical Communication (ECOC '09), Vienna, Austria, September 2009, Paper 6.2.1.
[11]  G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K. Kitayama, “160 Gb/s cross gain modulation in quantum dot SOA at1550 nm,” in Proceedings of the 35th European Conference on Optical Communication (ECOC '09), pp. 1–2, Vienna, Austria,, 2009, Paper PDP 1.4.
[12]  A. Rostami, H. B. A. Nejad, R. M. Qartavol, and H. R. Saghai, “Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 46, no. 3, pp. 354–360, 2010.
[13]  M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing over 40 Gbit/s,” Japanese Journal of Applied Physics, vol. 40, no. 5B, pp. L488–L491, 2001.
[14]  M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s-1 and a new scheme of 3R regenerators,” Measurement Science and Technology, vol. 13, no. 11, pp. 1683–1691, 2002.
[15]  J. L. Xiao and Y. Z. Huang, “Numerical analysis of gain saturation, noise figure, and carrier distribution for quantum-dot semiconductor-optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 44, no. 5, pp. 448–455, 2008.
[16]  W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials, Springer, New York, NY, USA, 1999.
[17]  M. van der Poel, E. Gehrig, O. Hess, D. Birkedal, and J. M. Hvam, “Ultrafast gain dynamics in quantum-dot amplifiers: theoretical analysis and experimental investigations,” IEEE Journal of Quantum Electronics, vol. 41, no. 9, pp. 1115–1123, 2005.
[18]  E. Gehrig and O. Hess, “Mesoscopic spatiotemporal theory for quantum-dot lasers,” Physical Review A, vol. 65, no. 3, Article ID 033804, 16 pages, 2002.
[19]  W. W. Chow and S. W. Koch, “Theory of semiconductor quantum-dot laser dynamics,” IEEE Journal of Quantum Electronics, vol. 41, no. 4, pp. 495–505, 2005.
[20]  D. W. Reschner, E. Gehrig, and O. Hess, “Pulse amplification and spatio-spectral hole-burning in inhomogeneously broadened quantum-dot semiconductor optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 45, no. 1, pp. 21–33, 2009.
[21]  C. Meuer, J. Kim, M. Laemmlin et al., “High-speed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 749–756, 2009.
[22]  M. Sugawara, H. Ebe, N. Hatori et al., “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Physical Review B, vol. 69, no. 23, Article ID 235332, 39 pages, 2004.
[23]  A. Bilenca and G. Eisenstein, “On the noise properties of linear and nonlinear quantum-dot semiconductor optical amplifiers: the impact of inhomogeneously broadened gain and fast carrier dynamics,” IEEE Journal of Quantum Electronics, vol. 40, no. 6, pp. 690–702, 2004.
[24]  O. Qasaimeh, “Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 542–544, 2004.
[25]  J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2538–2540, 2006.
[26]  A. V. Uskov, T. W. Berg, and J. M?rk, “Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 40, no. 3, pp. 306–320, 2004.
[27]  J. I. Ababneh and O. Qasaimeh, “Simple model for quantum-dot semiconductor optical amplifiers using artificial neural networks,” IEEE Transactions on Electron Devices, vol. 53, no. 7, pp. 1543–1550, 2006.
[28]  O. Qasaimeh, “Effect of doping on the optical characteristics of quantum-dot semiconductor optical amplifiers,” Journal of Lightwave Technology, vol. 27, no. 12, pp. 1978–1984, 2009.
[29]  O. R. Qasaimeh, “Ultra-fast gain recovery and compression due to auger-assisted relaxation in quantum dot semiconductor optical amplifiers,” Journal of Lightwave Technology, vol. 27, no. 13, pp. 2530–2536, 2009.
[30]  A. Fiore and A. Markus, “Differential gain and gain compression in quantum-dot lasers,” IEEE Journal of Quantum Electronics, vol. 43, no. 4, pp. 287–294, 2007.
[31]  H. Taleb, K. Abedi, and S. Golmohammadi, “Operation of quantum-dot semiconductor optical amplifiers under nonuniform current injection,” Applied Optics, vol. 50, no. 5, pp. 608–617, 2011.
[32]  S. B. Kuntze, A. J. Zilkie, L. Pavel, and J. S. Aitchison, “Nonlinear state-space model of semiconductor optical amplifiers with gain compression for system design and analysis,” Journal of Lightwave Technology, vol. 26, no. 14, pp. 2274–2281, 2008.
[33]  K. Abedi and H. Taleb, “Phase recovery acceleration in quantum-dot semiconductor optical amplifiers,” Journal of Lightwave Technology, vol. 30, no. 12, pp. 1924–1930, 2012.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413