全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Biological Effects of Combining Metals in a Posterior Spinal Implant: In Vivo Model Development Report of the First Two Cases

DOI: 10.1155/2014/761967

Full-Text   Cite this paper   Add to My Lib

Abstract:

Study Design. Combinations of metal implants (stainless steel (SS), titanium (Ti), and cobalt chrome (CC)) were placed in porcine spines. After 12 months, tissue response and implant corrosion were compared between mixed and single metal junctions. Objective. Model development and an attempt to determine any detriment of combining different metals in posterior spinal instrumentation. Methods. Yucatan mini-pigs underwent instrumentation over five unfused lumbar levels. A SS rod and a Ti rod were secured with Ti and SS pedicle screws, SS and Ti crosslinks, SS and CC sublaminar wires, and Ti sublaminar cable. The resulting 4 SS/SS, 3 Ti/Ti, and 11 connections between dissimilar metals per animal were studied after 12 months using radiographs, gross observation, and histology (foreign body reaction (FBR), metal particle count, and inflammation analyzed). Results. Two animals had constructs in place for 12 months with no complications. Histology of tissue over SS/SS connections demonstrated 11.1 ± 7.6 FBR cells, 2.1 ± 1.7 metal particles, and moderate to extensive inflammation. Ti/Ti tissue showed 6.3 ± 3.8 FBR cells, 5.2 ± 6.7 particles, and no to extensive inflammation (83% extensive). Tissue over mixed components had 14.1 ± 12.6 FBR cells and 13.4 ± 27.8 particles. Samples surrounding wires/cables versus other combinations demonstrated FBR (12.4 ± 13.5 versus 12.0 ± 9.6 cells, P = 0.96), particles (19.8 ± 32.6 versus 4.3 ± 12.7, P = 0.24), and inflammation (50% versus 75% extensive, P = 0.12). Conclusions. A nonfusion model was developed to study corrosion and analyze biological responses. Although no statistical differences were found in overlying tissue response to single versus mixed metal combinations, galvanic corrosion between differing metals is not ruled out. This pilot study supports further investigation to answer concerns when mixing metals in spinal constructs. 1. Introduction Metal spinal implants are not routinely removed, so corrosion over potentially several decades is a concern [1, 2]. Any movement between metal surfaces, even on the microscopic level, results in etching of the softer surface and often produces wear debris. As the metallic debris oxidizes or corrodes, the particles harden, causing abrasion and more severe etching, resulting in a cycle of implant destruction. Corrosion complications in spinal surgery are related to both loss of implant integrity and biological responses and include infection, toxicity, deterioration of construct strength, and pain [3]. Spine surgeons have experience with visualizing debris and darkened

References

[1]  J. J. Jacobs, J. L. Gilbert, and R. M. Urban, “Corrosion of metal orthopaedic implants,” Journal of Bone and Joint Surgery A, vol. 80, no. 2, pp. 268–282, 1998.
[2]  J. Black, “Does corrosion matter?” Journal of Bone and Joint Surgery B, vol. 70, no. 4, pp. 517–520, 1988.
[3]  W. J. Gaine, S. M. Andrew, P. Chadwick, E. Cooke, and J. B. Williamson, “Late operative site pain with isola posterior instrumentation requiring implant removal: infection or metal reaction?” Spine, vol. 26, no. 5, pp. 583–587, 2001.
[4]  U. Vieweg, D. van Roost, H. K. Wolf, C. A. Schyma, and J. Schramm, “Corrosion on an internal spinal fixator system,” Spine, vol. 24, no. 10, pp. 946–951, 1999.
[5]  L. Aulisa, A. di Benedetto, A. Vinciguerra, and P. Tranquilli-Leali, “Corrosion of the Harrington's instrumentation and biological behaviour of the rod-human spine system,” Biomaterials, vol. 3, no. 4, pp. 246–248, 1982.
[6]  S. Cook, M. Asher, S.-M. Lai, and J. Shobe, “Reoperation after primary posterior instrumentation and fusion for idiopathic scoliosis: toward defining late operative site pain of unknown cause,” Spine, vol. 25, no. 4, pp. 463–468, 2000.
[7]  Y. Mochida, T. W. Bauer, H. Nitto, H. E. Kambic, and G. F. Muschler, “Influence of stability and mechanical properties of a spinal fixation device on production of wear debris particles in vivo,” Journal of Biomedical Materials Research, vol. 53, no. 3, pp. 193–198, 2000.
[8]  H. Senaran, P. Atilla, F. Kaymaz, E. Acaroglu, and A. Surat, “Ultrastructural analysis of metallic debris and tissue reaction around spinal implants in patients with late operative site pain,” Spine, vol. 29, no. 15, pp. 1618–1623, 2004.
[9]  B. W. Cunningham, C. M. Orbegoso, A. E. Dmitriev et al., “The effect of spinal instrumentation particulate wear debris: an in vivo rabbit model and applied clinical study of retrieved instrumentation cases,” Spine Journal, vol. 3, no. 1, pp. 19–32, 2003.
[10]  N. J. Hallab, B. W. Cunningham, and J. J. Jacobs, “Spinal implant debris-induced osteolysis,” Spine, vol. 28, no. 20, pp. S125–S138, 2003.
[11]  J. S. Kirkpatrick, R. Venugopalan, P. Beck, and J. Lemons, “Corrosion on spinal implants,” Journal of Spinal Disorders and Techniques, vol. 18, no. 3, pp. 247–251, 2005.
[12]  M. L. Villarraga, P. A. Cripton, S. D. Teti et al., “Wear and corrosion in retrieved thoracolumbar posterior internal fixation,” Spine, vol. 31, no. 21, pp. 2454–2462, 2006.
[13]  K. C. Zartman, G. C. Berlet, C. F. Hyer, and J. R. Woodard, “Combining dissimilar metals in orthopaedic implants: revisited,” Foot & Ankle Specialist, vol. 4, no. 5, pp. 318–323, 2011.
[14]  P. J. H?l, A. M?lster, and N. R. Gjerdet, “Should the galvanic combination of titanium and stainless steel surgical implants be avoided?” Injury, vol. 39, no. 2, pp. 161–169, 2008.
[15]  H. Serhan, M. Slivka, T. Albert, and S. D. Kwak, “Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?” Spine Journal, vol. 4, no. 4, pp. 379–387, 2004.
[16]  L. C. Lucas, P. Dale, R. Buchanan, Y. Gill, D. Griffin, and J. E. Lemons, “In vitro vs in vivo corrosion analyses of two alloys,” Journal of Investigative Surgery, vol. 4, no. 1, pp. 13–21, 1991.
[17]  K. A. Thomas, S. D. Cook, A. F. Harding, and R. J. Haddad Jr., “Tissue reaction to implant corrosion in 38 internal fixation devices,” Orthopedics, vol. 11, no. 3, pp. 441–451, 1988.
[18]  J. L. Gilbert, C. A. Buckley, and J. J. Jacobs, “In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling,” Journal of Biomedical Materials Research, vol. 27, no. 12, pp. 1533–1544, 1993.
[19]  B. F. Shahgaldi, F. W. Heatley, A. Dewar, and B. Corrin, “In vivo corrosion of cobalt-chromium and titanium wear particles,” Journal of Bone and Joint Surgery B, vol. 77, no. 6, pp. 962–966, 1995.
[20]  L. C. Lucas, R. A. Buchanan, and J. E. Lemons, “Investigations on the galvanic corrosion of multialloy total hip prostheses,” Journal of Biomedical Materials Research, vol. 15, no. 5, pp. 731–747, 1981.
[21]  C. Wimmer and H. Gluch, “Aseptic loosening after CD instrumentation in the treatment of scoliosis: a report about eight cases,” Journal of Spinal Disorders, vol. 11, no. 5, pp. 440–443, 1998.
[22]  J. Dubousset, H. Shuffleberger, and D. Wenger, “Late infection with CD instrumentation,” Orthopaedic Transactions, vol. 18, article 121, 1994.
[23]  S. Richards, “Delayed infections following posterior spinal instrumentation for the treatment of idiopathic scoliosis,” Journal of Bone and Joint Surgery A, vol. 77, no. 4, pp. 524–529, 1995.
[24]  C. E. Clark and H. L. Shufflebarger, “Late-developing infection in instrumented idiopathic scoliosis,” Spine, vol. 24, no. 18, pp. 1909–1912, 1999.
[25]  C. Ho, D. J. Sucato, and B. S. Richards, “Risk factors for the development of delayed infections following posterior spinal fusion and instrumentation in adolescent idiopathic scoliosis patients,” Spine, vol. 32, no. 20, pp. 2272–2277, 2007.
[26]  M. Hahn, R. Nassutt, G. Delling, O. Mahrenholtz, E. Schneider, and M. Morlock, “The influence of material and design features on the mechanical properties of transpedicular spinal fixation implants,” Journal of Biomedical Materials Research, vol. 63, no. 3, pp. 354–362, 2002.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413